GO03 — Multivariate Methods GO3FAF

NAG Library Routine Document
GO3FAF

Note: before using this routine, please read the Users” Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

GO3FAF performs a principal coordinate analysis also known as classical metric scaling.

2 Specification
SUBROUTINE GO3FAF (ROOTS, N, D, NDIM, X, LDX, EVAL, WK, IWK, IFAIL)

INTEGER N, NDIM, LDX, IWK(5*N), IFAIL
REAL (KIND=nag_wp) D(N=*(N-1)/2), X(LDX,NDIM), EVAL(N), WK(N*(N+17)/2-1)
CHARACTER (1) ROOTS

3 Description

For a set of n objects a distance matrix D can be calculated such that d;; is a measure of how ‘far apart’
are objects ¢ and j (see GO3EAF for example). Principal coordinate analysis or metric scaling starts with a
distance matrix and finds points X in Euclidean space such that those points have the same distance
matrix. The aim is to find a small number of dimensions, k < (n — 1), that provide an adequate
representation of the distances.
The principal coordinates of the points are computed from the eigenvectors of the matrix E where
e;=—1 /Z(dlzj —d? - d_zj —i—dﬁ) with @’ denoting the average of dfj over the suffix j, etc.. The
eigenvectors are then scaled by multiplying by the square root of the value of the corresponding
eigenvalue.
k n—1
Provided that the ordered eigenvalues, );, of the matrix E are all positive, Z)\Z—/ Z)‘i shows how well
=1 =1
the data is represented in k dimensions. The eigenvalues will be non-negative if E is positive semidefinite.
This will be true provided d;; satisfies the inequality: d;; < d;;, + dj;, for all 7, j, k. If this is not the case
the size of the negative eigenvalue reflects the amount of deviation from this condition and the results
should be treated cautiously in the presence of large negative eigenvalues. See Krzanowski (1990) for
further discussion. GO3FAF provides the option for all eigenvalues to be computed so that the smallest
eigenvalues can be checked.

4  References
Chatfield C and Collins A J (1980) Introduction to Multivariate Analysis Chapman and Hall

Gower J C (1966) Some distance properties of latent root and vector methods used in multivariate analysis
Biometrika 53 325-338

Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

5 Parameters
1: ROOTS — CHARACTER(1) Input

On entry: indicates if all the eigenvalues are to be computed or just the NDIM largest.

ROOTS ="A'
All the eigenvalues are computed.
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ROOTS ='"L
Only the largest NDIM eigenvalues are computed.

Constraint: ROOTS ="A" or 'L

N — INTEGER Input
On entry: n, the number of objects in the distance matrix.

Constraint: N > NDIM.

D(N x (N —1)/2) — REAL (KIND=nag_wp) array Input

On entry: the lower triangle of the distance matrix D stored packed by rows. That is
D((i — 1) x (4 —2)/2 + j) must contain d;; for i =2,3,...,n;j=1,2,...,i— L

Constraint: D(i) > 0.0, for i = 1,2,...,n(n —1)/2.
NDIM — INTEGER Input

On entry: k, the number of dimensions used to represent the data.

Constraint: NDIM > 1.

X(LDX,NDIM) — REAL (KIND=nag_wp) array Output
On exit: the ith row contains k£ coordinates for the ¢th point, : = 1,2,... n.
LDX — INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which GO3FAF is
called.

Constraint: LDX > N.

EVAL(N) — REAL (KIND=nag_wp) array Output
On exit: if ROOTS ="A', EVAL contains the n scaled eigenvalues of the matrix FE.
If ROOTS ="'L', EVAL contains the largest k scaled eigenvalues of the matrix FE.

In both cases the eigenvalues are divided by the sum of the eigenvalues (that is, the trace of F).

WK(N x (N+17)/2 — 1) — REAL (KIND=nag_wp) array Workspace
IWK(5 x N) — INTEGER array Workspace
IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value —1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL =0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6  Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 1
On entry, NDIM < 1,
or N < NDIM,
or ROOTS #'A' or 'L,
or LDX < N.
IFAIL =2
On entry, D(7) < 0.0 for some 4, i = 1,2,...,n(n —1)/2,
or all elements of D = 0.0.
IFAIL =3

There are less than NDIM eigenvalues greater than zero. Try a smaller number of dimensions
(NDIM) or use non-metric scaling (GO3FCF).

IFAIL =4

The computation of the eigenvalues or eigenvectors has failed. Seek expert help.

7  Accuracy

GO3FAF uses FO8JFF (DSTERF) or FO8JJF (DSTEBZ) to compute the eigenvalues and FO8JKF
(DSTEIN) to compute the eigenvectors. These routines should be consulted for a discussion of the
accuracy of the computations involved.

8 Further Comments

Alternative, non-metric, methods of scaling are provided by GO3FCF.

The relationship between principal coordinates and principal components, see GO3FCF, is discussed in
Krzanowski (1990) and Gower (1966).

9  Example

The data, given by Krzanowski (1990), are dissimilarities between water vole populations in Europe. The
first two principal coordinates are computed.

9.1 Program Text
Program gO3fafe

! GO3FAF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

! .. Use Statements ..

Use nag_library, Only: g03faf, nag_wp, x0O4caf
! .. Implicit None Statement ..

Implicit None
! .. Parameters ..

Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Integer :: ifail, 1d, 1dx, liwk, 1wk, n, ndim
Character (1) :: roots

! .. Local Arrays ..
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Real (Kind=nag_wp), Allocatable =:: d(:), eval(:), wk(:), x(:,:)
Integer, Allocatable t:oiwk(:)
! .. Executable Statements
Write (nout,*) ’'GO3FAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size
Read (nin,*) n, ndim, roots

1d = n*x(n-1)/2

1ldx = n
1wk = nx(n+17)/2 - 1
liwk = 5%n

Allocate (d(1ld),x(1ldx,ndim),eval(n),wk(1lwk),biwk(liwk))

! Read in the lower triangular part of the distance matrix
Read (nin,*) d(1l:14)

! Perform principal co-ordinate analysis
ifail = 0
Call gO3faf(roots,n,d,ndim,x,1ldx,eval,wk,iwk,ifail)

! Display results
Write (nout,*) ’ Scaled Eigenvalues’
Write (nout,*)
If (roots=='L’ .0Or. roots==’'1l’) Then
Write (nout,99999) eval(l:ndim)

Else
Write (nout,99999) eval(l:n)
End If
Write (nout,*)
Flush (nout)
ifail = 0

Call xO4caf(’General’,’ ’',n,ndim,x,1ldx,’'Co-ordinates’,ifail)

99999 Format (8F10.4)
End Program gO3fafe

9.2 Program Data

GO3FAF Example Program Data

14 2 "1’

0.099

0.033 0.022

0.183 0.114 0.042

0.148 0.224 0.059 0.068

0.198 0.039 0.053 0.085 0.051

0.462 0.266 0.322 0.435 0.268 0.025

0.628 0.442 0.444 0.406 0.240 0.129 0.014

0.113 0.070 0.046 0.047 0.034 0.002 0.106 0.129

0.173 0.119 0.162 0.331 0.177 0.039 0.089 0.237 0.071

0.434 0.419 0.339 0.505 0.469 0.390 0.315 0.349 0.151 0.430

0.762 0.633 0.781 0.700 0.758 0.625 0.469 0.618 0.440 0.538 0.607

0.530 0.389 0.482 0.579 0.597 0.498 0.374 0.562 0.247 0.383 0.387 0.084
0.586 0.435 0.550 0.530 0.552 0.509 0.369 0.471 0.234 0.346 0.456 0.090 0.038

9.3 Program Results
GO3FAF Example Program Results
Scaled Eigenvalues
0.7871 0.2808
Co-ordinates

1 2
1 0.2408 0.2337
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2 0.1137 0.1168
3 0.2394 0.0760
4 0.2129 0.0605
5 0.2495 -0.0693
6 0.1487 -0.0778
7 -0.0514 -0.1623
8 0.0115 -0.3446
9 -0.0039 0.0059
10 0.0386 -0.0089
11 -0.0421 -0.050606
12 -0.5158 0.0291
13 -0.3180 0.1501
14 -0.3238 0.0475
Mark 24 GO3FAFES (last)
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