NAG Library Routine Document F06WPF (ZTFSM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

F06WPF (ZTFSM) performs one of the matrix-matrix operations

$$B \leftarrow \alpha A^{-1}B$$
, $B \leftarrow \alpha A^{-H}B$, $B \leftarrow \alpha BA^{-H}$ or $B \leftarrow \alpha BA^{-H}$,

where A is a complex triangular matrix stored in Rectangular Full Packed (RFP) format, B is an m by n complex matrix, and α is a complex scalar. A^{-H} denotes $\left(A^{H}\right)^{-1}$ or equivalently $\left(A^{-1}\right)^{H}$. The RFP storage format is described in Section 3.3.3 in the F07 Chapter Introduction.

No test for singularity or near-singularity of A is included in this routine. Such tests must be performed before calling this routine.

2 Specification

```
SUBROUTINE F06WPF (TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, B, LDB)

INTEGER M, N, LDB

COMPLEX (KIND=nag_wp) ALPHA, A(*), B(LDB,*)

CHARACTER(1) TRANSR, SIDE, UPLO, TRANS, DIAG
```

The routine may be called by its LAPACK name ztfsm.

3 Description

F06WPF (ZTFSM) solves (for X) a triangular linear system of one of the forms

$$AX = \alpha B, \qquad \qquad A^{\rm H}X = \alpha B, \\ XA = \alpha B \qquad \text{or} \quad XA^{\rm H} = \alpha B, \\$$

where A is a complex triangular matrix stored in RFP format, B, X are m by n complex matrices, and α is a complex scalar.

4 References

None.

5 Parameters

1: TRANSR – CHARACTER(1)

Input

On entry: specifies whether the normal RFP representation of A or its conjugate transpose is stored.

TRANSR = 'N'

The matrix A is stored in normal RFP format.

TRANSR = 'C'

The conjugate transpose of the RFP representation of the matrix A is stored.

Constraint: TRANSR = 'N' or 'C'.

Mark 24 F06WPF.1

F06WPF NAG Library Manual

2: SIDE – CHARACTER(1)

Input

On entry: specifies whether B is operated on from the left or the right, or similarly whether A (or its transpose) appears to the left or right of the solution matrix in the linear system to be solved.

SIDE = 'L'

B is pre-multiplied from the left. The system to be solved has the form $AX = \alpha B$ or $A^{\rm H}X = \alpha B$.

SIDE = 'R'

B is post-multiplied from the right. The system to be solved has the form $XA = \alpha B$ or $XA^{\rm H} = \alpha B$.

Constraint: SIDE = 'L' or 'R'.

3: UPLO – CHARACTER(1)

Input

On entry: specifies whether A is upper or lower triangular.

UPLO = 'U'

 ${\cal A}$ is upper triangular.

UPLO = 'L'

A is lower triangular.

Constraint: UPLO = 'U' or 'L'.

4: TRANS – CHARACTER(1)

Input

On entry: specifies whether the operation involves A^{-1} or A^{-H} , i.e., whether or not A is transpose conjugated in the linear system to be solved.

TRANS = 'N'

The operation involves A^{-1} , i.e., A is not transpose conjugated.

TRANS = 'C'

The operation involves A^{-H} , i.e., A is transpose conjugated.

Constraint: TRANS = 'N' or 'C'.

5: DIAG – CHARACTER(1)

Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG = 'N'

The diagonal elements of A are stored explicitly.

DIAG = 'U'

The diagonal elements of A are assumed to be 1, the corresponding elements of A are not referenced.

Constraint: DIAG = 'N' or 'U'.

6: M – INTEGER

Input

On entry: m, the number of rows of the matrix B.

Constraint: $M \ge 0$.

7: N - INTEGER

Input

On entry: n, the number of columns of the matrix B.

Constraint: $N \ge 0$.

8: ALPHA – COMPLEX (KIND=nag wp)

Input

On entry: the scalar α .

F06WPF.2 Mark 24

9: $A(*) - COMPLEX (KIND=nag_wp) array$

Input

Note: the dimension of the array A must be at least $max(1, M \times (M+1)/2)$ if SIDE = 'L' and at least $max(1, N \times (N+1)/2)$ if SIDE = 'R'.

On entry: A, the m by m triangular matrix A if SIDE = 'L' or the n by n triangular matrix A if SIDE = 'R', stored in RFP format, as described in Section 3.3.3 in the F07 Chapter Introduction.

10: B(LDB,*) - COMPLEX (KIND=nag wp) array

Input/Output

Note: the second dimension of the array B must be at least max(1, N).

On entry: the m by n matrix B.

If ALPHA = 0, B need not be set.

On exit: the updated matrix B, or similarly the solution matrix X.

11: LDB – INTEGER

Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06WPF (ZTFSM) is called.

Constraint: LDB $\geq \max(1, M)$.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Further Comments

None.

9 Example

This example reads in the upper triangular part of a symmetric matrix A which it converts to RFP format. It also reads in α and a 4 by 3 matrix B and then performs the matrix-matrix operation $B \leftarrow \alpha A^{-1}B$.

9.1 Program Text

```
Program f06wpfe
!
      FO6WPF Example Program Text
     Mark 24 Release. NAG Copyright 2012.
      .. Use Statements ..
     Use nag_library, Only: nag_wp, x04daf, ztfsm, ztrttf
!
      .. Implicit None Statement ..
     Implicit None
!
      .. Parameters ..
      Integer, Parameter
                                        :: nin = 5, nout = 6
      .. Local Scalars ..
      Complex (Kind=nag_wp)
                                        :: alpha
                                        :: i, ifail, info, lda, ldb, m, n
     Integer
                                        :: side, trans, transr, uplo
     Character (1)
!
      .. Local Arrays ..
     Complex (Kind=nag wp), Allocatable :: a(:,:), af(:), b(:,:), work(:)
!
      . Executable Statements ..
      Write (nout,*) 'F06WPF Example Program Results'
```

Mark 24 F06WPF.3

F06WPF NAG Library Manual

```
Skip heading in data file
      Read (nin,*)
      Read (nin,*) m, n, uplo, transr, side, alpha, trans
      lda = m
      ldb = m
      Allocate (a(lda,m), af((m*(m+1))/2), work(m), b(ldb,n))
      Read upper or lower triangle of matrix A from data file
      If (uplo=='L' .Or. uplo=='l') Then
        Do i = 1, m
          Read (nin,*) a(i,1:i)
        End Do
      Else
        Do i = 1, m
          Read (nin,*) a(i,i:m)
        End Do
      End If
      Read matrix B from data file
      Read (nin,*)(b(i,1:n),i=1,m)
      Convert A to rectangular full packed storage in AF
      The NAG name equivalent of ztrttf is f01vef
      Call ztrttf(transr,uplo,m,a,lda,af,info)
      Write (nout,*)
      Flush (nout)
      The NAG name equivalent of ztfsm is f06wpf
      Call ztfsm(transr,side,uplo,trans,'N',m,n,alpha,af,b,ldb)
Call x04daf('General','',m,n,b,ldb,'The Solution',ifail)
    End Program f06wpfe
9.2 Program Data
F06WPF Example Program Data
 4 3 'U' 'N' 'L' (4.21,1.28) 'N'
                                             : M, N, UPLO, TRANSR, SIDE, ALPHA, TRANS
 (1.1,1.1) (1.2,1.2) (1.3,1.3) (1.4,1.4)
 (2.2,2.2) (2.3,2.3) (2.4,2.4)
 (3.3,3.3) (3.4,3.4)
 (4.4, 4.4)
                                             : Unpacked Matrix A
 (1.80,0.59) (2.88, 1.23) (2.05, 0.78)
 (5.25,0.12) (1.76,-2.95) (2.20,-0.95)
 (1.58,2.01) (-2.69, 3.18) (0.11,-2.90) (-1.11,1.11) (-0.66, 1.66) (1.59,-0.59) : End of matrix B
9.3 Program Results
 FO6WPF Example Program Results
```

```
The Solution
            1
      -2.0339
                  8.6009
                             3.8676
       2.6429
                  4.3188
                             2.2452
                 1.0930
                            3.3517
2
      4.3280
      -4.3756
                 -8.8840
                            -0.0650
      2.5393
                 -0.9711
3
                            -2.0155
      -0.1237
                 2.5460
                            -1.5364
      -0.3229
                  0.1410
                            0.7955
       1.0621
                  1.2554
                            -0.8975
```

F06WPF.4 (last) Mark 24