NAG Library Routine Document

F06TWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

F06TWF transforms a complex upper triangular matrix to an upper spiked matrix by applying a given sequence of plane rotations.

2 Specification

```
SUBROUTINE F06TWF (SIDE, N, K1, K2, C, S, A, LDA)

INTEGER

N, K1, K2, LDA

REAL (KIND=nag_wp) C(*)

COMPLEX (KIND=nag_wp) S(*), A(LDA,*)

CHARACTER(1) SIDE
```

3 Description

F06TWF transforms an n by n complex upper triangular matrix U with real diagonal elements, to an upper spiked matrix H, by applying a given sequence of plane rotations from either the left or the right, in planes k_1 to k_2 . H has real diagonal elements except where the spike joins the diagonal.

If SIDE = 'L', H has a row spike, with nonzero elements $h_{k_2,k}$, for $k=k_1,k_1+1,\ldots,k_2-1$. The rotations are applied from the left:

$$H = PU$$
,

where $P = P_{k_1} P_{k_1+1} \cdots P_{k_2-1}$ and P_k is a rotation in the (k, k_2) plane.

If SIDE = 'R', H has a column spike, with nonzero elements h_{k+1,k_1} , for $k = k_1, k_1 + 1, \dots, k_2 - 1$. The rotations are applied from the right:

$$HP^{\mathrm{H}}=R$$
,

where $P = P_{k_2-1} \cdots P_{k_1+1} P_{k_1}$ and P_k is a rotation in the $(k_1, k+1)$ plane.

The 2 by 2 plane rotation part of P_k has the form

$$\begin{pmatrix} c_k & \bar{s}_k \\ -s_k & c_k \end{pmatrix}$$

with c_k real.

4 References

None.

5 Parameters

1: SIDE – CHARACTER(1)

Input

On entry: specifies whether U is operated on from the left or the right.

SIDE = 'L'

U is pre-multiplied from the left.

Mark 24 F06TWF.1

SIDE = 'R'

U is post-multiplied from the right.

Constraint: SIDE = 'L' or 'R'.

2: N – INTEGER

On entry: n, the order of the matrices U and H.

Constraint: N > 0.

3: K1 – INTEGER

Input

Input

4: K2 – INTEGER

Input

On entry: the values k_1 and k_2 .

If K1 < 1 or $K2 \le K1$ or K2 > N, an immediate return is effected.

5: C(*) – REAL (KIND=nag wp) array

Input

Note: the dimension of the array C must be at least K2 - K1.

On entry: C(k) must hold c_k , the cosine of the rotation P_k , for $k = k_1, \ldots, k_2 - 1$.

6: S(*) – COMPLEX (KIND=nag_wp) array

Input/Output

Note: the dimension of the array S must be at least K2 - K1.

On entry: S(k) must hold s_k , the sine of the rotation P_k , for $k = k_1, \ldots, k_2 - 1$.

On exit: S(k) holds a nonzero element of the spike of H: $h_{k_2,k}$ if SIDE = L', or h_{k+1,k_1} if SIDE = R', for $k = k_1, \ldots, k_2 - 1$.

7: A(LDA,*) - COMPLEX (KIND=nag wp) array

Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n upper triangular matrix U. The imaginary parts of the diagonal elements must be zero.

On exit: the upper triangular part of the upper spiked matrix H. The imaginary parts of the diagonal elements are set to zero, except for the (k_2,k_2) element if SIDE = 'L', or the (k_1,k_1) element if SIDE = 'R'.

8: LDA – INTEGER

Input

On entry: the first dimension of the array A as declared in the (sub)program from which F06TWF is called.

Constraint: LDA $\geq \max(1, N)$.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Further Comments

None.

F06TWF.2 Mark 24

9 Example

None.

Mark 24 F06TWF.3 (last)