
NAG Library Routine Document

F04YCF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F04YCF estimates the 1-norm of a real matrix without accessing the matrix explicitly. It uses reverse
communication for evaluating matrix-vector products. The routine may be used for estimating matrix
condition numbers.

2 Specification

SUBROUTINE F04YCF (ICASE, N, X, ESTNRM, WORK, IWORK, IFAIL)

INTEGER ICASE, N, IWORK(N), IFAIL

REAL (KIND=nag_wp) X(N), ESTNRM, WORK(N)

3 Description

F04YCF computes an estimate (a lower bound) for the 1-norm

Ak k1 ¼ max
1�j�n

Xn
i¼1

aij
�� �� ð1Þ

of an n by n real matrix A ¼ aij
� �

. The routine regards the matrix A as being defined by a user-supplied

‘Black Box’ which, given an input vector x, can return either of the matrix-vector products Ax or ATx. A
reverse communication interface is used; thus control is returned to the calling program whenever a matrix-
vector product is required.

Note: this routine is not recommended for use when the elements of A are known explicitly; it is then
more efficient to compute the 1-norm directly from formula (1) above.

The main use of the routine is for estimating B�1
�� ��

1
, and hence the condition number

�1 Bð Þ ¼ Bk k1 B�1
�� ��

1
, without forming B�1 explicitly (A ¼ B�1 above).

If, for example, an LU factorization of B is available, the matrix-vector products B�1x and B�Tx required

by F04YCF may be computed by back- and forward-substitutions, without computing B�1.

The routine can also be used to estimate 1-norms of matrix products such as A�1B and ABC, without
forming the products explicitly. Further applications are described by Higham (1988).

Since Ak k1 ¼ AT
�� ��

1
, F04YCF can be used to estimate the 1-norm of A by working with AT instead of

A.

The algorithm used is based on a method given by Hager (1984) and is described by Higham (1988). A
comparison of several techniques for condition number estimation is given by Higham (1987).

Note: F04YDF can also be used to estimate the norm of a real matrix. F04YDF uses a more recent
algorithm than F04YCF and it is recommended that F04YDF be used in place of F04YCF.
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5 Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and re-
entries, and a final exit, as indicated by the parameter ICASE. Between intermediate exits and re-entries,
all parameters other than X must remain unchanged.

1: ICASE – INTEGER Input/Output

On initial entry: must be set to 0.

On intermediate exit: ICASE ¼ 1 or 2, and XðiÞ, for i ¼ 1; 2; . . . ; n, contain the elements of a
vector x. The calling program must

(a) evaluate Ax (if ICASE ¼ 1) or ATx (if ICASE ¼ 2),

(b) place the result in X, and

(c) call F04YCF once again, with all the other parameters unchanged.

On final exit: ICASE ¼ 0.

2: N – INTEGER Input

On initial entry: n, the order of the matrix A.

Constraint: N � 1.

3: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate exit: contains the current vector x.

On intermediate re-entry: must contain Ax (if ICASE ¼ 1) or ATx (if ICASE ¼ 2).

On final exit: the array is undefined.

4: ESTNRM – REAL (KIND=nag_wp) Input/Output

On initial entry: need not be set.

On intermediate exit: should not be changed.

On final exit: an estimate (a lower bound) for Ak k1.

5: WORKðNÞ – REAL (KIND=nag_wp) array Input/Output

On initial entry: need not be set.

On final exit: contains a vector v such that v ¼ Aw where ESTNRM ¼ vk k1= wk k1 (w is not

returned). If A ¼ B�1 and ESTNRM is large, then v is an approximate null vector for B.

6: IWORKðNÞ – INTEGER array Communication Array

7: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you
should refer to Section 3.3 in the Essential Introduction for details.
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For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.

7 Accuracy

In extensive tests on random matrices of size up to n ¼ 100 the estimate ESTNRM has been found
always to be within a factor eleven of Ak k1; often the estimate has many correct figures. However,
matrices exist for which the estimate is smaller than Ak k1 by an arbitrary factor; such matrices are very
unlikely to arise in practice. See Higham (1988) for further details.

8 Further Comments

8.1 Timing

The total time taken within F04YCF is proportional to n. For most problems the time taken during calls to
F04YCF will be negligible compared with the time spent evaluating matrix-vector products between calls
to F04YCF.

The number of matrix-vector products required varies from 4 to 11 (or is 1 if n ¼ 1). In most cases 4 or 5
products are required; it is rare for more than 7 to be needed.

8.2 Overflow

It is your responsibility to guard against potential overflows during evaluation of the matrix-vector

products. In particular, when estimating B�1
�� ��

1
using a triangular factorization of B, F04YCF should not

be called if one of the factors is exactly singular – otherwise division by zero may occur in the
substitutions.

8.3 Use in Conjunction with NAG Library Routines

To estimate the 1-norm of the inverse of a matrix A, the following skeleton code can normally be used:

... code to factorize A ...
IF (A is not singular) THEN

ICASE = 0
10 CALL F04YCF (ICASE,N,X,ESTNRM,WORK,IWORK,IFAIL)

IF (ICASE.NE.0) THEN
IF (ICASE.EQ.1) THEN

... code to compute inv(A)*x ...
ELSE

... code to compute inv(transpose(A))*x ...
END IF
GO TO 10

END IF
END IF
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To compute A�1x or A�Tx, solve the equation Ay ¼ x or ATy ¼ x for y, overwriting y on x. The code
will vary, depending on the type of the matrix A, and the NAG routine used to factorize A.

Note that if A is any type of symmetric matrix, then A ¼ AT, and the code following the call of F04YCF
can be reduced to:

IF (ICASE.NE.0) THEN
... code to compute inv(A)*x ...
GO TO 10

END IF

The factorization will normally have been performed by a suitable routine from Chapters F01, F03 or F07.
Note also that many of the ‘Black Box’ routines in Chapter F04 for solving systems of equations also
return a factorization of the matrix. The example program in Section 9 illustrates how F04YCF can be
used in conjunction with NAG Library routines for two important types of matrix: full nonsymmetric
matrices (factorized by F07ADF (DGETRF)) and sparse nonsymmetric matrices (factorized by F01BRF).

It is straightforward to use F04YCF for the following other types of matrix, using the named routines for
factorization and solution:

nonsymmetric tridiagonal (F01LEF and F04LEF);
nonsymmetric almost block-diagonal (F01LHF and F04LHF);
nonsymmetric band (F07BDF (DGBTRF) and F07BEF (DGBTRS));
symmetric positive definite (F03BFF, or F07FDF (DPOTRF) and F07FEF (DPOTRS));
symmetric positive definite band (F07HDF (DPBTRF) and F07HEF (DPBTRS));
symmetric positive definite tridiagonal (F07JAF (DPTSV), F07JDF (DPTTRF) and F07JEF
(DPTTRS));
symmetric positive definite variable bandwidth (F01MCF and F04MCF);
symmetric positive definite sparse (F11JAF and F11JBF);
symmetric indefinite (F07PDF (DSPTRF) and F07PEF (DSPTRS)).

For upper or lower triangular matrices, no factorization routine is needed: A�1x and A�Tx may be
computed by calls to F06PJF (DTRSV) (or F06PKF (DTBSV) if the matrix is banded, or F06PLF
(DTPSV) if the matrix is stored in packed form).

9 Example

For this routine two examples are presented. There is a single example program for F04YCF, with a main
program and the code to solve the two example problems is given in Example 1 (EX1) and Example 2
(EX2).

Example 1 (EX1)

To estimate the condition number Ak k1 A�1
�� ��

1
of the matrix A given by

A ¼

1:5 2:0 3:0 �2:1 0:3
2:5 3:0 �4:0 2:3 �1:1
3:5 4:0 0:5 �3:1 �1:4
�0:4 �3:2 �2:1 3:1 2:1

1:7 3:7 1:9 �2:2 �3:3

0
BBBB@

1
CCCCA

.

Example 2 (EX2)

To estimate the condition number Ak k1 A�1
�� ��

1
of the matrix A given by

A ¼

5:0 0:0 0:0 0:0 0:0 0:0
0:0 0:0 �1:0 2:0 0:0 0:0
0:0 2:0 3:0 0:0 0:0 0:0
�2:0 0:0 0:0 1:0 1:0 0:0
�1:0 0:0 0:0 �1:0 2:0 �3:0
�1:0 �1:0 0:0 0:0 0:0 6:0

0
BBBBBB@

1
CCCCCCA

.
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9.1 Program Text

Program f04ycfe

! F04YCF Example Program Text

! Mark 24 Release. NAG Copyright 2012.

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nout = 6

! .. Executable Statements ..
Write (nout,*) ’F04YCF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1

! .. Use Statements ..
Use nag_library, Only: dasum, dgetrf, dgetrs, f04ycf, nag_wp

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nin = 5

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, cond, estnrm
Integer :: i, icase, ifail, info, j, lda, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), p(:), work(:), x(:)
Integer, Allocatable :: ipiv(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 1’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*)
Read (nin,*)
Read (nin,*) n
lda = n
Allocate (a(lda,n),p(n),work(n),x(n),iwork(n),ipiv(n))
Read (nin,*)(a(i,1:n),i=1,n)

! First compute the norm of A.
! DASUM (f06ekf) returns the sum of the absolute values of a column of A.

anorm = zero
Do j = 1, n

anorm = max(anorm,dasum(n,a(1,j),1))
End Do
Write (nout,99999) ’Computed norm of A =’, anorm

! Next estimate the norm of inverse(A). We do not form the
! inverse explicitly.

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
! LU Factorize A
! The NAG name equivalent of dgetrf is f07adf

Call dgetrf(n,n,a,lda,ipiv,info)

icase = 0
loop: Do

ifail = 0
Call f04ycf(icase,n,x,estnrm,work,iwork,ifail)
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If (icase/=0) Then
If (icase==1) Then

! Return the vector inv(A)*X
! The NAG name equivalent of dgetrs is f07aef

Call dgetrs(’N’,n,1,a,lda,ipiv,x,n,info)
Else If (icase==2) Then

! Return the vector inv(A)’*X
Call dgetrs(’T’,n,1,a,lda,ipiv,x,n,info)

End If
! Continue until icase is returned as 0.

Else
Write (nout,99999) ’Estimated norm of inverse(A) =’, estnrm
cond = anorm*estnrm
Write (nout,99998) ’Estimated condition number of A =’, cond
Write (nout,*)
Exit loop

End If
End Do loop

99999 Format (1X,A,F8.4)
99998 Format (1X,A,F5.1)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: f01brf, f04axf, f04ycf, nag_wp

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: tenth = 0.1E+0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nin = 5

! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, cond, estnrm, resid, sum, u
Integer :: i, icase, ifail, j, licn, lirn, n, &

nz
Logical :: grow, lblock

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), w(:), work1(:), x(:)
Integer, Allocatable :: icn(:), ikeep(:), irn(:), iw(:), &

iwork(:)
Integer :: idisp(10)
Logical :: abort(4)

! .. Intrinsic Procedures ..
Intrinsic :: abs, max

! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) ’Example 2’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*)

! Input N, the order of matrix A, and NZ, the number of non-zero
! elements of A.

Read (nin,*) n, nz
licn = 4*nz
lirn = 2*nz
Allocate (a(licn),w(n),work1(n),x(n),icn(licn),ikeep(5*n),irn(lirn), &

iw(8*n),iwork(n))
! Input the elements of A, along with row and column information.

Read (nin,*)(a(i),irn(i),icn(i),i=1,nz)
! First compute the norm of A.

anorm = zero
Do i = 1, n

sum = zero
Do j = 1, nz

If (icn(j)==i) sum = sum + abs(a(j))
End Do
anorm = max(anorm,sum)

End Do
Write (nout,99999) ’Computed norm of A =’, anorm

! Next estimate the norm of inverse(A). We do not form the
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! inverse explicitly.
! Factorise A into L*U using F01BRF.

u = tenth
lblock = .True.
grow = .True.
abort(1) = .True.
abort(2) = .True.
abort(3) = .False.
abort(4) = .True.

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f01brf(n,nz,a,licn,irn,lirn,icn,u,ikeep,iw,w,lblock,grow,abort, &

idisp,ifail)

icase = 0
loop: Do

ifail = 0
Call f04ycf(icase,n,x,estnrm,work1,iwork,ifail)

If (icase/=0) Then
! Return X := inv(A)*X or X = inv(A)’*X, depending on the
! value of ICASE, by solving A*Y = X or A’*Y = X,
! overwriting Y on X.

Call f04axf(n,a,licn,icn,ikeep,x,w,icase,idisp,resid)
! Continue until icase is returned as 0.

Else
Write (nout,99999) ’Estimated norm of inverse(A) =’, estnrm
cond = anorm*estnrm
Write (nout,99998) ’Estimated condition number of A =’, cond
Exit loop

End If
End Do loop

99999 Format (1X,A,F8.4)
99998 Format (1X,A,F5.1)

End Subroutine ex2
End Program f04ycfe

9.2 Program Data

F04YCF Example Program Data

Example 1
5 : n

1.5 2.0 3.0 -2.1 0.3
2.5 3.0 -4.0 2.3 -1.1
3.5 4.0 0.5 -3.1 -1.4

-0.4 -3.2 -2.1 3.1 2.1
1.7 3.7 1.9 -2.2 -3.3 : matrix A

Example 2
6 15 : n, nz

5.0 1 1 2.0 2 2 -1.0 2 3 2.0 2 4 3.0 3 3
-2.0 4 1 1.0 4 4 1.0 4 5 -1.0 5 1 -1.0 5 4
2.0 5 5 -3.0 5 6 -1.0 6 1 -1.0 6 2 6.0 6 6 : matrix A

9.3 Program Results

F04YCF Example Program Results

Example 1

Computed norm of A = 15.9000
Estimated norm of inverse(A) = 1.7635
Estimated condition number of A = 28.0
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Example 2

Computed norm of A = 9.0000
Estimated norm of inverse(A) = 1.9333
Estimated condition number of A = 17.4

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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