F03 – Determinants Introduction – F03 # NAG Library Chapter Introduction ## F03 – Determinants ## **Contents** | 1 | Scope of the Chapter | 2 | |---|---|---| | 2 | Background to the Problems | 2 | | 3 | Recommendations on Choice and Use of Available Routines | 2 | | 4 | Decision Trees | 2 | | 5 | Functionality Index | 3 | | 6 | Auxiliary Routines Associated with Library Routine Parameters | 3 | | 7 | Routines Withdrawn or Scheduled for Withdrawal | 3 | | 8 | References | 3 | Mark 24 F03.1 ## 1 Scope of the Chapter This chapter is concerned with the calculation of determinants of square matrices. ## 2 Background to the Problems The routines in this chapter compute the determinant of a square matrix A. The matrix is assumued to have first been decomposed into triangular factors $$A = LU$$. using routines from Chapter F07. If A is positive definite, then $U = L^{T}$, and the determinant is the product of the squares of the diagonal elements of L. Otherwise, the routines in this chapter use the Dolittle form of the LU decomposition, where L has unit elements on its diagonal. The determinant is then the product of the diagonal elements of U, taking account of possible sign changes due to row interchanges. To avoid overflow or underflow in the computation of the determinant, some scaling is associated with each multiplication in the product of the relevant diagonal elements. The final value is represented by $$\det A = d1 \times 2^{d2}$$ where d2 is an integer and $$\frac{1}{16} \le |d1| < 1.$$ For complex valued determinants the real and imaginary parts are scaled separately. Most of the original routines of the chapter were based on those published in the book edited by Wilkinson and Reinsch (1971). We are very grateful to the late Dr J H Wilkinson FRS for his help and interest during the implementation of this chapter of the Library. ### 3 Recommendations on Choice and Use of Available Routines It is extremely wasteful of computer time and storage to use an inappropriate routine, for example to use a routine requiring a complex matrix when A is real. Most programmers will know whether their matrix is real or complex, but may be less certain whether or not a real symmetric matrix A is positive definite, i.e., all eigenvalues of A>0. A real symmetric matrix A not known to be positive definite must be treated as a general real matrix. In all other cases either the band routine or the general routines must be used. The routines in this chapter are general purpose routines. These give the value of the determinant in its scaled form, d1 and d2, given the triangular decomposition of the matrix from a suitable routine from Chapter F07. #### 4 Decision Trees Tree 1 F03.2 Mark 24 F03 – Determinants Introduction – F03 ## 5 Functionality Index ## 6 Auxiliary Routines Associated with Library Routine Parameters None. #### 7 Routines Withdrawn or Scheduled for Withdrawal The following lists all those routines that have been withdrawn since Mark 17 of the Library or are scheduled for withdrawal at one of the next two marks. | Withdrawn
Routine | Mark of
Withdrawal | Replacement Routine(s) | |----------------------|-----------------------|--| | F03AAF | 25 | F07ADF (DGETRF) and F03BAF | | F03ABF | 25 | F07FDF (DPOTRF) and F03BFF | | F03ACF | 25 | F07HDF (DPBTRF) and F03BHF | | F03ADF | 25 | F07ARF (ZGETRF) and F03BNF | | F03AEF | 25 | F07FDF (DPOTRF) and F03BFF | | F03AFF | 25 | F07ADF (DGETRF) and F03BAF | | F03AGF | 17 | F07HDF (DPBTRF) | | F03AHF | 17 | F07ARF (ZGETRF) | | F03AMF | 17 | No replacement required; see Chapter F03 | #### 8 References Fox L (1964) An Introduction to Numerical Linear Algebra Oxford University Press Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer-Verlag Mark 24 F03.3 (last)