
NAG Library Routine Document

D03ECF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D03ECF uses the Strongly Implicit Procedure to calculate the solution to a system of simultaneous
algebraic equations of seven-point molecule form on a three-dimensional topologically-rectangular mesh.
(‘Topological’ means that a polar grid, for example, can be used if it is equivalent to a rectangular box.)

2 Specification

SUBROUTINE D03ECF (N1, N2, N3, LDA, SDA, A, B, C, D, E, F, G, Q, T, APARAM,
ITMAX, ITCOUN, ITUSED, NDIR, IXN, IYN, IZN, CONRES,
CONCHN, RESIDS, CHNGS, WRKSP1, WRKSP2, WRKSP3, WRKSP4,
IFAIL)

&
&
&

INTEGER N1, N2, N3, LDA, SDA, ITMAX, ITCOUN, ITUSED, NDIR, IXN,
IYN, IZN, IFAIL

&

REAL (KIND=nag_wp) A(LDA,SDA,N3), B(LDA,SDA,N3), C(LDA,SDA,N3),
D(LDA,SDA,N3), E(LDA,SDA,N3), F(LDA,SDA,N3),
G(LDA,SDA,N3), Q(LDA,SDA,N3), T(LDA,SDA,N3), APARAM,
CONRES, CONCHN, RESIDS(ITMAX), CHNGS(ITMAX),
WRKSP1(LDA,SDA,N3), WRKSP2(LDA,SDA,N3),
WRKSP3(LDA,SDA,N3), WRKSP4(LDA,SDA,N3)

&
&
&
&
&

3 Description

Given a set of simultaneous equations

Mt ¼ q ð1Þ
(which could be nonlinear) derived, for example, from a finite difference representation of a three-
dimensional elliptic partial differential equation and its boundary conditions, the routine determines the
values of the dependent variable t. M is a square n1 � n2 � n3ð Þ by n1 � n2 � n3ð Þ matrix and q is a
known vector of length n1 � n2 � n3ð Þ.
The equations must be of seven-diagonal form:

aijktij;k�1 þ bijkti;j�1;k þ cijkti�1;jk þ dijktijk þ eijktiþ1;jk þ fijkti;jþ1;k þ gijktij;kþ1 ¼ qijk
for i ¼ 1; 2; . . . ; n1, j ¼ 1; 2; . . . ; n2 and k ¼ 1; 2; . . . ; n3, provided that dijk 6¼ 0:0.

Indeed, if dijk ¼ 0:0, then the equation is assumed to be:

tijk ¼ qijk.

The system is solved iteratively from a starting approximation t 1ð Þ by the formulae:

r nð Þ ¼ q �Mt nð Þ

Ms nð Þ ¼ r nð Þ

t nþ1ð Þ ¼ t nð Þ þ s nð Þ.

Thus r nð Þ is the residual of the nth approximate solution t nð Þ, and s nð Þ is the update change vector.

The calling program supplies an initial approximation for the values of the dependent variable in the array
T, the coefficients of the seven-point molecule system of equations in the arrays A, B, C, D, E, F and G,
and the source terms in the array Q. The routine derives the residual of the latest approximate solution,
and then uses the approximate LU factorization of the Strongly Implicit Procedure with the necessary
acceleration parameter adjustment by calling D03UBF at each iteration. D03ECF combines the newly
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derived change with the old approximation to obtain the new approximate solution for t. The new solution
is checked for convergence against the user-supplied convergence criteria, and if these have not been
satisfied, the iterative cycle is repeated. Convergence is based on both the maximum absolute normalized
residuals (calculated with reference to the previous approximate solution as these are calculated at the
commencement of each iteration) and on the maximum absolute change made to the values of t.

Problems in topologically non-rectangular-box-shaped regions can be solved using the routine by
surrounding the region by a circumscribing topologically rectangular box. The equations for the nodal
values external to the region of interest are set to zero (i.e., dijk ¼ tijk ¼ 0) and the boundary conditions
are incorporated into the equations for the appropriate nodes.

If there is no better initial approximation when starting the iterative cycle, one can use an array of zeros as
the initial approximation.

The routine can be used to solve linear elliptic equations in which case the arrays A, B, C, D, E, F, G and
Q remain constant and for which a single call provides the required solution. It can also be used to solve
nonlinear elliptic equations, in which case some or all of these arrays may require updating during the
progress of the iterations as more accurate solutions are derived. The routine will then have to be called
repeatedly in an outer iterative cycle. Dependent on the nonlinearity, some under-relaxation of the
coefficients and/or source terms may be needed during their recalculation using the new estimates of the
solution.

The routine can also be used to solve each step of a time-dependent parabolic equation in three space
dimensions. The solution at each time step can be expressed in terms of an elliptic equation if the Crank–
Nicolson or other form of implicit time integration is used.

Neither diagonal dominance, nor positive-definiteness, of the matrix M formed from the arrays A, B, C, D,
E, F and G is necessary to ensure convergence.

For problems in which the solution is not unique in the sense that an arbitrary constant can be added to the
solution (for example Poisson’s equation with all Neumann boundary conditions), a parameter is
incorporated so that the solution can be rescaled. A specified nodal value is subtracted from the whole
solution t after the completion of every iteration. This keeps rounding errors to a minimum for those cases
when convergence is slow. For such problems there is generally an associated compatibility condition.
For the example mentioned this compatibility condition equates the total net source within the region (i.e.,
the source integrated over the region) with the total net outflow across the boundaries defined by the
Neumann conditions (i.e., the normal derivative integrated along the whole boundary). It is very important
that the algebraic equations derived to model such a problem implement accurately the compatibility
condition. If they do not, a net source or sink is very likely to be represented by the set of algebraic
equations and no steady-state solution of the equations exists.

4 References

Jacobs D A H (1972) The strongly implicit procedure for the numerical solution of parabolic and elliptic
partial differential equations Note RD/L/N66/72 Central Electricity Research Laboratory

Stone H L (1968) Iterative solution of implicit approximations of multi-dimensional partial differential
equations SIAM J. Numer. Anal. 5 530–558

Weinstein H G, Stone H L and Kwan T V (1969) Iterative procedure for solution of systems of parabolic
and elliptic equations in three dimensions Industrial and Engineering Chemistry Fundamentals 8 281–287

5 Parameters

1: N1 – INTEGER Input

On entry: the number of nodes in the first coordinate direction, n1.

Constraint: N1 > 1.
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2: N2 – INTEGER Input

On entry: the number of nodes in the second coordinate direction, n2.

Constraint: N2 > 1.

3: N3 – INTEGER Input

On entry: the number of nodes in the third coordinate direction, n3.

Constraint: N3 > 1.

4: LDA – INTEGER Input

On entry: the first dimension of the arrays A, B, C, D, E, F, G, Q, T, WRKSP1, WRKSP2,
WRKSP3 and WRKSP4 as declared in the (sub)program from which D03ECF is called.

Constraint: LDA � N1.

5: SDA – INTEGER Input

On entry: the second dimension of the arrays A, B, C, D, E, F, G, Q, T, WRKSP1, WRKSP2,
WRKSP3 and WRKSP4 as declared in the (sub)program from which D03ECF is called.

Constraint: SDA � N2.

6: AðLDA,SDA,N3Þ – REAL (KIND=nag_wp) array Input

On entry: A i; j; kð Þ must contain the coefficient of tij;k�1 in the i; j; kð Þth equation of the system (1),
for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of A, for k ¼ 1, must be
zero after incorporating the boundary conditions, since they involve nodal values from outside the
box.

7: BðLDA,SDA,N3Þ – REAL (KIND=nag_wp) array Input

On entry: B i; j; kð Þ must contain the coefficient of ti;j�1;k in the i; j; kð Þth equation of the system
(1), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of B, for j ¼ 1, must
be zero after incorporating the boundary conditions, since they involve nodal values from outside
the box.

8: CðLDA,SDA,N3Þ – REAL (KIND=nag_wp) array Input

On entry: C i; j; kð Þ must contain the coefficient of ti�1;jk in the i; j; kð Þth equation of the system (1),
for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of C, for i ¼ 1, must be
zero after incorporating the boundary conditions, since they involve nodal values from outside the
box.

9: DðLDA,SDA,N3Þ – REAL (KIND=nag_wp) array Input

On entry: D i; j; kð Þ must contain the coefficient of tijk (the ‘central’ term) in the i; j; kð Þth equation
of the system (1), for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of D
are checked to ensure that they are nonzero. If any element is found to be zero, the corresponding
algebraic equation is assumed to be tijk ¼ qijk. This feature can be used to define the equations for
nodes at which, for example, Dirichlet boundary conditions are applied, or for nodes external to the
problem of interest. Setting D i; j; kð Þ ¼ 0:0 at appropriate points, and the corresponding value of
Q i; j; kð Þ to the appropriate value, namely the prescribed value of T i; j; kð Þ in the Dirichlet case, or
to zero at an external point.

10: EðLDA,SDA,N3Þ – REAL (KIND=nag_wp) array Input

On entry: E i; j; kð Þ must contain the coefficient of tiþ1;jk in the i; j; kð Þth equation of the system (1),
for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of E, for i ¼ N1, must be
zero after incorporating the boundary conditions, since they involve nodal values from outside the
box.

D03 – Partial Differential Equations D03ECF

Mark 24 D03ECF.3



11: FðLDA,SDA,N3Þ – REAL (KIND=nag_wp) array Input

On entry: F i; j; kð Þ must contain the coefficient of ti;jþ1;k in the i; j; kð Þth equation of the system (1),
, for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of F, for j ¼ N2, must
be zero after incorporating the boundary conditions, since they involve nodal values from outside
the box.

12: GðLDA,SDA,N3Þ – REAL (KIND=nag_wp) array Input

On entry: G i; j; kð Þ must contain the coefficient of tij;kþ1 in the i; j; kð Þth equation of the system (1),
for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3. The elements of G, for k ¼ N3, must
be zero after incorporating the boundary conditions, since they involve nodal values from outside
the box.

13: QðLDA,SDA,N3Þ – REAL (KIND=nag_wp) array Input

On entry: Q i; j; kð Þ must contain qijk, for i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3,
i.e., the source-term values at the nodal points of the system (1).

14: TðLDA,SDA,N3Þ – REAL (KIND=nag_wp) array Input/Output

On entry: T i; j; kð Þ must contain the element tijk of an approximate solution to the equations, for
i ¼ 1; 2; . . . ;N1, j ¼ 1; 2; . . . ;N2 and k ¼ 1; 2; . . . ;N3.

If no better approximation is known, an array of zeros can be used.

On exit: the solution derived by the routine.

15: APARAM – REAL (KIND=nag_wp) Input

On entry: the iteration acceleration factor. A value of 1:0 is adequate for most typical problems.
However, if convergence is slow, the value can be reduced, typically to 0:2 or 0:1. If divergence is
obtained, the value can be increased, typically to 2:0, 5:0 or 10:0.

Constraint: 0:0 < APARAM � N1� 1ð Þ2 þ N2� 1ð Þ2 þ N3� 1ð Þ2
� �

=3:0.

16: ITMAX – INTEGER Input

On entry: the maximum number of iterations to be used by the routine in seeking the solution. A

reasonable value might be 20 for a problem with 3000 nodes and convergence criteria of about 10�3

of the original residual and change.

17: ITCOUN – INTEGER Input/Output

On entry: on the first call of D03ECF, ITCOUN must be set to 0. On subsequent entries, its value
must be unchanged from the previous call.

On exit: its value is increased by the number of iterations used on this call (namely ITUSED). It
therefore stores the accumulated number of iterations actually used.

For subsequent calls for the same problem, i.e., with the same N1, N2 and N3 but possibly different
coefficients and/or source terms, as occur with nonlinear systems or with time-dependent systems,
ITCOUN should not be reset, i.e., it must contain the accumulated number of iterations. In this way
a suitable cycling of the sequence of iteration parameters is obtained in the calls to D03UBF.

18: ITUSED – INTEGER Output

On exit: the number of iterations actually used on that call.

19: NDIR – INTEGER Input

On entry: indicates whether or not the system of equations has a unique solution. For systems
which have a unique solution, NDIR must be set to any nonzero value. For systems derived from
problems to which an arbitrary constant can be added to the solution, for example Poisson’s
equation with all Neumann boundary conditions, NDIR should be set to 0 and the values of the next
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three parameters must be specified. For such problems the routine subtracts the value of the
function derived at the node (IXN, IYN, IZN) from the whole solution after each iteration to reduce
the possibility of large rounding errors. You must also ensure for such problems that the appropriate
compatibility condition on the source terms Q is satisfied. See the comments at the end of
Section 3.

20: IXN – INTEGER Input

On entry: is ignored unless NDIR is equal to zero, in which case it must specify the first index of
the nodal point at which the solution is to be set to zero. The node should not correspond to a
corner node, or to a node external to the region of interest.

21: IYN – INTEGER Input

On entry: is ignored unless NDIR is equal to zero, in which case it must specify the second index of
the nodal point at which the solution is to be set to zero. The node should not correspond to a
corner node, or to a node external to the region of interest.

22: IZN – INTEGER Input

On entry: is ignored unless NDIR is equal to zero, in which case it must specify the third index of
the nodal point at which the solution is to be set to zero. The node should not correspond to a
corner node, or to a node external to the region of interest.

23: CONRES – REAL (KIND=nag_wp) Input

On entry: the convergence criterion to be used on the maximum absolute value of the normalized
residual vector components. The latter is defined as the residual of the algebraic equation divided
by the central coefficient when the latter is not equal to 0:0, and defined as the residual when the
central coefficient is zero.

CONRES should not be less than a reasonable multiple of the machine precision.

24: CONCHN – REAL (KIND=nag_wp) Input

On entry: the convergence criterion to be used on the maximum absolute value of the change made
at each iteration to the elements of the array T, namely the dependent variable. CONCHN should
not be less than a reasonable multiple of the machine accuracy multiplied by the maximum value of
T attained.

Convergence is achieved when both the convergence criteria are satisfied. You can therefore set
convergence on either the residual or on the change, or (as is recommended) on a requirement that
both are below prescribed limits.

25: RESIDSðITMAXÞ – REAL (KIND=nag_wp) array Output

On exit: the maximum absolute value of the residuals calculated at the ith iteration, for
i ¼ 1; 2; . . . ; ITUSED. If the residual of the solution is sought you must calculate this in the
subroutine from which D03ECF is called. The sequence of values RESIDS indicates the rate of
convergence.

26: CHNGSðITMAXÞ – REAL (KIND=nag_wp) array Output

On exit: the maximum absolute value of the changes made to the components of the dependent
variable T at the ith iteration, for i ¼ 1; 2; . . . ; ITUSED. The sequence of values CHNGS indicates
the rate of convergence.
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27: WRKSP1ðLDA,SDA,N3Þ – REAL (KIND=nag_wp) array Workspace
28: WRKSP2ðLDA,SDA,N3Þ – REAL (KIND=nag_wp) array Workspace
29: WRKSP3ðLDA,SDA,N3Þ – REAL (KIND=nag_wp) array Workspace
30: WRKSP4ðLDA,SDA,N3Þ – REAL (KIND=nag_wp) array Workspace

31: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Note: D03ECF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 2,
or N2 < 2,
or N3 < 2.

IFAIL ¼ 2

On entry, LDA < N1,
or SDA < N2.

IFAIL ¼ 3

On entry, APARAM � 0:0.

IFAIL ¼ 4

On entry, APARAM > N1� 1ð Þ2 þ N2� 1ð Þ2 þ N3� 1ð Þ2
� �

=3:0.

IFAIL ¼ 5

Convergence was not achieved after ITMAX iterations.

7 Accuracy

The improvement in accuracy for each iteration depends on the size of the system and on the condition of
the update matrix characterised by the seven-diagonal coefficient arrays. The ultimate accuracy obtainable
depends on the above factors and on the machine precision. The rate of convergence obtained with the
Strongly Implicit Procedure is not always smooth because of the cyclic use of nine acceleration parameters.
The convergence may become slow with very large problems. The final accuracy obtained may be judged
approximately from the rate of convergence determined from the sequence of values returned in the arrays
RESIDS and CHNGS and the magnitude of the maximum absolute value of the change vector on the last
iteration stored in CHNGSðITUSEDÞ.
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8 Further Comments

The time taken per iteration is approximately proportional to N1� N2� N3.

Convergence may not always be obtained when the problem is very large and/or the coefficients of the
equations have widely disparate values. The latter case is often associated with a near ill-conditioned
matrix.

9 Example

This example solves Laplace’s equation in a rectangular box with a non-uniform grid spacing in the x, y,
and z coordinate directions and with Dirichlet boundary conditions specifying the function on the surfaces
of the box equal to

e 1:0þxð Þ=y n2ð Þ � cos
ffiffiffi
2
p

y=y n2ð Þ
� �

� e �1:0�zð Þ=y n2ð Þ.

Note that this is the same problem as that solved in the example for D03UBF. The differences in the
maximum residuals obtained at each iteration between the two test runs are explained by the fact that in
D03ECF the residual at each node is normalized by dividing by the central coefficient, whereas this
normalization has not been used in the example program for D03UBF.

9.1 Program Text

Program d03ecfe

! D03ECF Example Program Text

! Mark 24 Release. NAG Copyright 2012.

! .. Use Statements ..
Use nag_library, Only: d03ecf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: aparam, conchn, conres, root2, x1, &

x2, y1, y2, yy, z1, z2
Integer :: i, ifail, itcoun, itmax, itused, &

ixn, iyn, izn, j, k, lda, n1, n2, &
n3, ndir, sda

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:,:), b(:,:,:), c(:,:,:), &

chngs(:), d(:,:,:), e(:,:,:), &
f(:,:,:), g(:,:,:), q(:,:,:), &
resids(:), t(:,:,:), wrksp1(:,:,:), &
wrksp2(:,:,:), wrksp3(:,:,:), &
wrksp4(:,:,:), x(:), y(:), z(:)

! .. Intrinsic Procedures ..
Intrinsic :: cos, exp, sqrt

! .. Executable Statements ..
Write (nout,*) ’D03ECF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n1, n2, n3, itmax
lda = n1
sda = n2
Allocate (a(lda,sda,n3),b(lda,sda,n3),c(lda,sda,n3),chngs(itmax), &

d(lda,sda,n3),e(lda,sda,n3),f(lda,sda,n3),g(lda,sda,n3),q(lda,sda,n3), &
resids(itmax),t(lda,sda,n3),wrksp1(lda,sda,n3),wrksp2(lda,sda,n3), &
wrksp3(lda,sda,n3),wrksp4(lda,sda,n3),x(n1),y(n2),z(n3))

Read (nin,*) x(1:n1)
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Read (nin,*) y(1:n2)
Read (nin,*) z(1:n3)
Read (nin,*) conres, conchn
Read (nin,*) ndir
root2 = sqrt(two)
aparam = one
itcoun = 0

! Set up difference equation coefficients, source terms and
! initial approximation.

a(1:n1,1:n2,1:n3) = zero
b(1:n1,1:n2,1:n3) = zero
c(1:n1,1:n2,1:n3) = zero
d(1:n1,1:n2,1:n3) = zero
e(1:n1,1:n2,1:n3) = zero
f(1:n1,1:n2,1:n3) = zero
g(1:n1,1:n2,1:n3) = zero
q(1:n1,1:n2,1:n3) = zero
t(1:n1,1:n2,1:n3) = zero

! Non-zero Specification for internal nodes
Do k = 2, n3 - 1

Do j = 2, n2 - 1
Do i = 2, n1 - 1

a(i,j,k) = two/((z(k)-z(k-1))*(z(k+1)-z(k-1)))
g(i,j,k) = two/((z(k+1)-z(k))*(z(k+1)-z(k-1)))
b(i,j,k) = two/((y(j)-y(j-1))*(y(j+1)-y(j-1)))
f(i,j,k) = two/((y(j+1)-y(j))*(y(j+1)-y(j-1)))
c(i,j,k) = two/((x(i)-x(i-1))*(x(i+1)-x(i-1)))
e(i,j,k) = two/((x(i+1)-x(i))*(x(i+1)-x(i-1)))
d(i,j,k) = -a(i,j,k) - b(i,j,k) - c(i,j,k) - e(i,j,k) - f(i,j,k) - &

g(i,j,k)
End Do

End Do
End Do

! Non-zero specification for boundary nodes
yy = one/y(n2)
x1 = (x(1)+one)*yy
x2 = (x(n1)+one)*yy
Do j = 1, n2

y1 = root2*y(j)*yy
q(1,j,1:n3) = exp(x1)*cos(y1)*exp((-z(1:n3)-one)*yy)
q(n1,j,1:n3) = exp(x2)*cos(y1)*exp((-z(1:n3)-one)*yy)

End Do
y1 = root2*y(1)*yy
y2 = root2*y(n2)*yy
Do i = 1, n1

x1 = (x(i)+one)*yy
q(i,1,1:n3) = exp(x1)*cos(y1)*exp((-z(1:n3)-one)*yy)
q(i,n2,1:n3) = exp(x1)*cos(y2)*exp((-z(1:n3)-one)*yy)

End Do
z1 = (-z(1)-one)*yy
z2 = (-z(n3)-one)*yy
Do i = 1, n1

x1 = (x(i)+one)*yy
q(i,1:n2,1) = exp(x1)*cos(root2*y(1:n2)*yy)*exp(z1)
q(i,1:n2,n3) = exp(x1)*cos(root2*y(1:n2)*yy)*exp(z2)

End Do

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03ecf(n1,n2,n3,lda,sda,a,b,c,d,e,f,g,q,t,aparam,itmax,itcoun, &

itused,ndir,ixn,iyn,izn,conres,conchn,resids,chngs,wrksp1,wrksp2, &
wrksp3,wrksp4,ifail)

Write (nout,*) ’Iteration Maximum Maximum’
Write (nout,*) ’ number residual change’
If (itused/=0) Then

Write (nout,99999)(i,resids(i),chngs(i),i=1,itused)
End If
Write (nout,*)
Write (nout,*) ’Table of calculated function values’
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Write (nout,*)
Write (nout,99998)
Do k = 1, n3

Do j = 1, n2
Write (nout,99997) k, j, (i,t(i,j,k),i=1,n1)

End Do
End Do

99999 Format (2X,I3,9X,E11.4,4X,E11.4)
99998 Format (1X,’K J ’,4(’ (I T )’))
99997 Format (1X,I1,2X,I1,1X,4(1X,I3,2X,F8.3))

End Program d03ecfe

9.2 Program Data

D03ECF Example Program Data
4 5 6 18 : n1, n2, n3, itmax
0.0 1.0 3.0 6.0 : x
0.0 1.0 3.0 6.0 10.0 : y
0.0 1.0 3.0 6.0 10.0, 15.0 : z
0.1E-5 0.1E-5 : conres, conchn
1 : ndir

9.3 Program Results

D03ECF Example Program Results

Iteration Maximum Maximum
number residual change

1 0.1822E+01 0.1822E+01
2 0.9025E-02 0.1970E-01
3 0.1358E-02 0.1496E-02
4 0.4013E-04 0.3848E-04
5 0.5321E-05 0.5481E-05
6 0.2695E-06 0.2333E-06

Table of calculated function values

K J (I T ) (I T ) (I T ) (I T )
1 1 1 1.000 2 1.105 3 1.350 4 1.822
1 2 1 0.990 2 1.094 3 1.336 4 1.804
1 3 1 0.911 2 1.007 3 1.230 4 1.661
1 4 1 0.661 2 0.731 3 0.892 4 1.205
1 5 1 0.156 2 0.172 3 0.211 4 0.284
2 1 1 0.905 2 1.000 3 1.221 4 1.649
2 2 1 0.896 2 0.990 3 1.210 4 1.632
2 3 1 0.825 2 0.912 3 1.114 4 1.503
2 4 1 0.598 2 0.662 3 0.809 4 1.090
2 5 1 0.141 2 0.156 3 0.190 4 0.257
3 1 1 0.741 2 0.819 3 1.000 4 1.350
3 2 1 0.733 2 0.811 3 0.991 4 1.336
3 3 1 0.675 2 0.747 3 0.913 4 1.230
3 4 1 0.490 2 0.543 3 0.664 4 0.892
3 5 1 0.116 2 0.128 3 0.156 4 0.211
4 1 1 0.549 2 0.607 3 0.741 4 1.000
4 2 1 0.543 2 0.601 3 0.734 4 0.990
4 3 1 0.500 2 0.554 3 0.677 4 0.911
4 4 1 0.363 2 0.402 3 0.492 4 0.661
4 5 1 0.086 2 0.095 3 0.116 4 0.156
5 1 1 0.368 2 0.407 3 0.497 4 0.670
5 2 1 0.364 2 0.403 3 0.492 4 0.664
5 3 1 0.335 2 0.371 3 0.454 4 0.611
5 4 1 0.243 2 0.270 3 0.330 4 0.443
5 5 1 0.057 2 0.063 3 0.077 4 0.105
6 1 1 0.223 2 0.247 3 0.301 4 0.407
6 2 1 0.221 2 0.244 3 0.298 4 0.403
6 3 1 0.203 2 0.225 3 0.274 4 0.371
6 4 1 0.148 2 0.163 3 0.199 4 0.269
6 5 1 0.035 2 0.038 3 0.047 4 0.063
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Example Program
Solution in Y-Z Planes for x=6
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