
NAG Library Routine Document

D02RAF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02RAF solves a two-point boundary value problem with general boundary conditions for a system of
ordinary differential equations, using a deferred correction technique and Newton iteration.

2 Specification

SUBROUTINE D02RAF (N, MNP, NP, NUMBEG, NUMMIX, TOL, INIT, X, Y, LDY, ABT,
FCN, G, IJAC, JACOBF, JACOBG, DELEPS, JACEPS, JACGEP,
WORK, LWORK, IWORK, LIWORK, IFAIL)

&
&

INTEGER N, MNP, NP, NUMBEG, NUMMIX, INIT, LDY, IJAC, LWORK,
IWORK(LIWORK), LIWORK, IFAIL

&

REAL (KIND=nag_wp) TOL, X(MNP), Y(LDY,MNP), ABT(N), DELEPS, WORK(LWORK)

EXTERNAL FCN, G, JACOBF, JACOBG, JACEPS, JACGEP

3 Description

D02RAF solves a two-point boundary value problem for a system of n ordinary differential equations in
the interval a; b½ � with b > a. The system is written in the form

y0i ¼ fi x; y1; y2; . . . ; ynð Þ, i ¼ 1; 2; . . . ; n ð1Þ
and the derivatives fi are evaluated by FCN. With the differential equations (1) must be given a system of
n (nonlinear) boundary conditions

gi y að Þ; y bð Þð Þ ¼ 0, i ¼ 1; 2; . . . ; n,

where

y xð Þ ¼ y1 xð Þ; y2 xð Þ; . . . ; yn xð Þ½ �T. ð2Þ
The functions gi are evaluated by G. The solution is computed using a finite difference technique with
deferred correction allied to a Newton iteration to solve the finite difference equations. The technique used
is described fully in Pereyra (1979).

You must supply an absolute error tolerance and may also supply an initial mesh for the finite difference
equations and an initial approximate solution (alternatively a default mesh and approximation are used).
The approximate solution is corrected using Newton iteration and deferred correction. Then, additional
points are added to the mesh and the solution is recomputed with the aim of making the error everywhere
less than your tolerance and of approximately equidistributing the error on the final mesh. The solution is
returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh. If, on
the other hand, the solution is required at several specific points then you should use the interpolation
routines provided in Chapter E01 if these points do not themselves form a convenient mesh.

The Newton iteration requires Jacobian matrices

@fi
@yj

� �
;

@gi
@yj að Þ

� �
and

@gi
@yj bð Þ

� �
.

D02 – Ordinary Differential Equations D02RAF

Mark 24 D02RAF.1

These may be supplied through JACOBF for
@fi
@yj

� �
and JACOBG for the others. Alternatively the

Jacobians may be calculated by numerical differentiation using the algorithm described in Curtis et al.
(1974).

For problems of the type (1) and (2) for which it is difficult to determine an initial approximation from
which the Newton iteration will converge, a continuation facility is provided. You must set up a family of
problems

y0 ¼ f x; y; �ð Þ, g y að Þ; y bð Þ; �ð Þ ¼ 0, ð3Þ

where f ¼ f1; f2; . . . ; fn½ �T etc., and where � is a continuation parameter. The choice � ¼ 0 must give a
problem (3) which is easy to solve and � ¼ 1 must define the problem whose solution is actually required.
The routine solves a sequence of problems with � values

0 ¼ �1 < �2 < � � � < �p ¼ 1. ð4Þ
The number p and the values �i are chosen by the routine so that each problem can be solved using the

solution of its predecessor as a starting approximation. Jacobians
@f
@�

and
@g
@�

are required and they may be

supplied by you via JACEPS and JACGEP respectively or may be computed by numerical differentiation.

4 References

Curtis A R, Powell M J D and Reid J K (1974) On the estimation of sparse Jacobian matrices J. Inst.
Maths. Applics. 13 117–119

Pereyra V (1979) PASVA3: An adaptive finite-difference Fortran program for first order nonlinear, ordinary
boundary problems Codes for Boundary Value Problems in Ordinary Differential Equations. Lecture Notes
in Computer Science (eds B Childs, M Scott, J W Daniel, E Denman and P Nelson) 76 Springer–Verlag

5 Parameters

1: N – INTEGER Input

On entry: n, the number of differential equations.

Constraint: N > 0.

2: MNP – INTEGER Input

On entry: MNP must be set to the maximum permitted number of points in the finite difference
mesh. If LWORK or LIWORK are too small then internally MNP will be replaced by the
maximum permitted by these values. (A warning message will be output if on entry IFAIL is set to
obtain monitoring information.)

Constraint: MNP � 32.

3: NP – INTEGER Input/Output

On entry: must be set to the number of points to be used in the initial mesh.

Constraint: 4 � NP � MNP.

On exit: the number of points in the final mesh.

4: NUMBEG – INTEGER Input

On entry: the number of left-hand boundary conditions (that is the number involving y að Þ only).

Constraint: 0 � NUMBEG < N.

D02RAF NAG Library Manual

D02RAF.2 Mark 24

5: NUMMIX – INTEGER Input

On entry: the number of coupled boundary conditions (that is the number involving both y að Þ and
y bð Þ).
Constraint: 0 � NUMMIX � N� NUMBEG.

6: TOL – REAL (KIND=nag_wp) Input

On entry: a positive absolute error tolerance. If

a ¼ x1 < x2 < � � � < xNP ¼ b
is the final mesh, zj xið Þ is the jth component of the approximate solution at xi, and yj xð Þ is the jth
component of the true solution of (1) and (2), then, except in extreme circumstances, it is expected
that

zj xið Þ � yj xið Þ
�� �� � TOL, i ¼ 1; 2; . . . ;NP and j ¼ 1; 2; . . . ; n. ð5Þ

Constraint: TOL > 0:0.

7: INIT – INTEGER Input

On entry: indicates whether you wish to supply an initial mesh and approximate solution (INIT ¼ 1)
or whether default values are to be used, (INIT ¼ 0).

Constraint: INIT ¼ 0 or 1.

8: XðMNPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: you must set Xð1Þ ¼ a and XðNPÞ ¼ b. If INIT ¼ 0 on entry a default equispaced mesh
will be used, otherwise you must specify a mesh by setting XðiÞ ¼ xi, for i ¼ 2; 3; . . . ;NP� 1.

Constraints:

if INIT ¼ 0, Xð1Þ < XðNPÞ;
if INIT ¼ 1, Xð1Þ < Xð2Þ < � � � < XðNPÞ.

On exit: Xð1Þ;Xð2Þ; . . . ;XðNPÞ define the final mesh (with the returned value of NP) and Xð1Þ ¼ a
and XðNPÞ ¼ b.

9: YðLDY,MNPÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if INIT ¼ 0, then Y need not be set.

If INIT ¼ 1, then the array Y must contain an initial approximation to the solution such that Yðj; iÞ
contains an approximation to

yj xið Þ, i ¼ 1; 2; . . . ;NP and j ¼ 1; 2; . . . ; n.

On exit: the approximate solution zj xið Þ satisfying (5) on the final mesh, that is

Yðj; iÞ ¼ zj xið Þ, i ¼ 1; 2; . . . ;NP and j ¼ 1; 2; . . . ; n,

where NP is the number of points in the final mesh. If an error has occurred then Y contains the
latest approximation to the solution. The remaining columns of Y are not used.

10: LDY – INTEGER Input

On entry: the first dimension of the array Y as declared in the (sub)program from which D02RAF is
called.

Constraint: LDY � N.

11: ABTðNÞ – REAL (KIND=nag_wp) array Output

On exit: ABTðiÞ, for i ¼ 1; 2; . . . ; n, holds the largest estimated error (in magnitude) of the ith
component of the solution over all mesh points.

D02 – Ordinary Differential Equations D02RAF

Mark 24 D02RAF.3

12: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i) at a general point x for a given value of
�, the continuation parameter (see Section 3).

The specification of FCN is:

SUBROUTINE FCN (X, EPS, Y, F, N)

INTEGER N

REAL (KIND=nag_wp) X, EPS, Y(N), F(N)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: EPS – REAL (KIND=nag_wp) Input

On entry: �, the value of the continuation parameter. This is 1 if continuation is not being
used.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the values of the dependent variables at x.

4: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values of the derivatives fi evaluated at x given �, for i ¼ 1; 2; . . . ; n.

5: N – INTEGER Input

On entry: n, the number of equations.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02RAF is called. Parameters denoted as Input must not be changed by
this procedure.

13: G – SUBROUTINE, supplied by the user. External Procedure

G must evaluate the boundary conditions in equation (3) and place them in the array BC.

The specification of G is:

SUBROUTINE G (EPS, YA, YB, BC, N)

INTEGER N

REAL (KIND=nag_wp) EPS, YA(N), YB(N), BC(N)

1: EPS – REAL (KIND=nag_wp) Input

On entry: �, the value of the continuation parameter. This is 1 if continuation is not being
used.

2: YAðNÞ – REAL (KIND=nag_wp) array Input

On entry: the value yi að Þ, for i ¼ 1; 2; . . . ; n.

3: YBðNÞ – REAL (KIND=nag_wp) array Input

On entry: the value yi bð Þ, for i ¼ 1; 2; . . . ; n.

4: BCðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values gi y að Þ; y bð Þ; �ð Þ, for i ¼ 1; 2; . . . ; n. These must be ordered as follows:

D02RAF NAG Library Manual

D02RAF.4 Mark 24

(i) first, the conditions involving only y að Þ (see NUMBEG);

(ii) next, the NUMMIX coupled conditions involving both y að Þ and y bð Þ (see
NUMMIX); and,

(iii) finally, the conditions involving only y bð Þ (N� NUMBEG� NUMMIX).

5: N – INTEGER Input

On entry: n, the number of equations.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program
from which D02RAF is called. Parameters denoted as Input must not be changed by this
procedure.

14: IJAC – INTEGER Input

On entry: indicates whether or not you are supplying Jacobian evaluation routines.

IJAC 6¼ 0
You must supply JACOBF and JACOBG and also, when continuation is used, JACEPS and
JACGEP.

IJAC ¼ 0
Numerical differentiation is used to calculate the Jacobian and the routines D02GAW,
D02GAX, D02GAY and D02GAZ respectively may be used as the dummy parameters.

15: JACOBF – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

JACOBF evaluates the Jacobian
@fi
@yj

� �
, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n, given x and yj, for

j ¼ 1; 2; . . . ; n.

If all Jacobians are to be approximated internally by numerical differentiation then it must be
replaced by the NAG defined null function pointer NULLFN.

The specification of JACOBF is:

SUBROUTINE JACOBF (X, EPS, Y, F, N)

INTEGER N

REAL (KIND=nag_wp) X, EPS, Y(N), F(N,N)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: EPS – REAL (KIND=nag_wp) Input

On entry: �, the value of the continuation parameter. This is 1 if continuation is not being
used.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the values of the dependent variables at x.

4: FðN,NÞ – REAL (KIND=nag_wp) array Output

On exit: Fðj; iÞ must be set to the value of
@fi
@yj

, evaluated at the point x; yð Þ, for

i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n.

5: N – INTEGER Input

On entry: n, the number of equations.

D02 – Ordinary Differential Equations D02RAF

Mark 24 D02RAF.5

JACOBF must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02RAF is called. Parameters denoted as Input must not be changed by
this procedure.

16: JACOBG – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

JACOBG evaluates the Jacobians
@gi

@yj að Þ

� �
and

@gi
@yj bð Þ

� �
. The ordering of the rows of AJ and

BJ must correspond to the ordering of the boundary conditions described in the specification of G.

If all Jacobians are to be approximated internally by numerical differentiation then it must be
replaced by the NAG defined null function pointer NULLFN.

The specification of JACOBG is:

SUBROUTINE JACOBG (EPS, YA, YB, AJ, BJ, N)

INTEGER N

REAL (KIND=nag_wp) EPS, YA(N), YB(N), AJ(N,N), BJ(N,N)

1: EPS – REAL (KIND=nag_wp) Input

On entry: �, the value of the continuation parameter. This is 1 if continuation is not being
used.

2: YAðNÞ – REAL (KIND=nag_wp) array Input

On entry: the value yi að Þ, for i ¼ 1; 2; . . . ; n.

3: YBðNÞ – REAL (KIND=nag_wp) array Input

On entry: the value yi bð Þ, for i ¼ 1; 2; . . . ; n.

4: AJðN,NÞ – REAL (KIND=nag_wp) array Output

On exit: AJði; jÞ must be set to the value
@gi

@yj að Þ
, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n.

5: BJðN,NÞ – REAL (KIND=nag_wp) array Output

On exit: BJði; jÞ must be set to the value
@gi
@yj bð Þ

, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n.

6: N – INTEGER Input

On entry: n, the number of equations.

JACOBG must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02RAF is called. Parameters denoted as Input must not be changed by
this procedure.

17: DELEPS – REAL (KIND=nag_wp) Input/Output

On entry: must be given a value which specifies whether continuation is required. If
DELEPS � 0:0 or DELEPS � 1:0 then it is assumed that continuation is not required. If
0:0 < DELEPS < 1:0 then it is assumed that continuation is required unless
DELEPS <

ffi
machine precision
p

when an error exit is taken. DELEPS is used as the increment
�2 � �1 (see (4)) and the choice DELEPS ¼ 0:1 is recommended.

On exit: an overestimate of the increment �p � �p�1 (in fact the value of the increment which would
have been tried if the restriction �p ¼ 1 had not been imposed). If continuation was not requested
then DELEPS ¼ 0:0.

D02RAF NAG Library Manual

D02RAF.6 Mark 24

If continuation is not requested then JACEPS and JACGEP may each be replaced by dummy actual
parameters in the call to D02RAF. (D02GAW and D02GAX respectively may be used as the
dummy parameters.)

18: JACEPS – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

JACEPS evaluates the derivative
@fi
@�

given x and y if continuation is being used.

If all Jacobians (derivatives) are to be approximated internally by numerical differentiation, or
continuation is not being used, then it must be replaced by the NAG defined null function pointer
NULLFN.

The specification of JACEPS is:

SUBROUTINE JACEPS (X, EPS, Y, F, N)

INTEGER N

REAL (KIND=nag_wp) X, EPS, Y(N), F(N)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: EPS – REAL (KIND=nag_wp) Input

On entry: �, the value of the continuation parameter.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the solution values yi, for i ¼ 1; 2; . . . ; n, at the point x.

4: FðNÞ – REAL (KIND=nag_wp) array Output

On exit: FðiÞ must contain the value
@fi
@�

at the point x; yð Þ, for i ¼ 1; 2; . . . ; n.

5: N – INTEGER Input

On entry: n, the number of equations.

JACEPS must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02RAF is called. Parameters denoted as Input must not be changed by
this procedure.

19: JACGEP – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

JACGEP evaluates the derivatives
@gi
@�

if continuation is being used.

If all Jacobians (derivatives) are to be approximated internally by numerical differentiation, or
continuation is not being used, then it must be replaced by the NAG defined null function pointer
NULLFN.

The specification of JACGEP is:

SUBROUTINE JACGEP (EPS, YA, YB, BCEP, N)

INTEGER N

REAL (KIND=nag_wp) EPS, YA(N), YB(N), BCEP(N)

1: EPS – REAL (KIND=nag_wp) Input

On entry: �, the value of the continuation parameter.

D02 – Ordinary Differential Equations D02RAF

Mark 24 D02RAF.7

2: YAðNÞ – REAL (KIND=nag_wp) array Input

On entry: the value of yi að Þ, for i ¼ 1; 2; . . . ; n.

3: YBðNÞ – REAL (KIND=nag_wp) array Input

On entry: the value of yi bð Þ, for i ¼ 1; 2; . . . ; n.

4: BCEPðNÞ – REAL (KIND=nag_wp) array Output

On exit: BCEPðiÞ must contain the value of
@gi
@�

, for i ¼ 1; 2; . . . ; n.

5: N – INTEGER Input

On entry: n, the number of equations.

JACGEP must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02RAF is called. Parameters denoted as Input must not be changed by
this procedure.

20: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
21: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which D02RAF
is called.

Constraint: LWORK � MNP� 3N2 þ 6Nþ 2
� �

þ 4N2 þ 3N.

22: IWORKðLIWORKÞ – INTEGER array Workspace
23: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which D02RAF
is called.

Constraints:

if IJAC 6¼ 0, LIWORK � MNP� 2� Nþ 1ð Þ þ N;

if IJAC ¼ 0, LIWORK � MNP� 2� Nþ 1ð Þ þ N2 þ 4� Nþ 2.

24: IFAIL – INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Section 3.3 in the Essential Introduction).

On entry: IFAIL must be set to a value with the decimal expansion cba, where each of the decimal
digits c, b and a must have a value of 0 or 1.

a ¼ 0 specifies hard failure, otherwise soft failure;

b ¼ 0 suppresses error messages, otherwise error messages will be printed (see Section 6);

c ¼ 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

D02RAF NAG Library Manual

D02RAF.8 Mark 24

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

One or more of the parameters N, MNP, NP, NUMBEG, NUMMIX, TOL, DELEPS, LWORK or
LIWORK is incorrectly set, or Xð1Þ � XðNPÞ or the mesh points XðiÞ are not in strictly ascending
order.

IFAIL ¼ 2

A finer mesh is required for the accuracy requested; that is MNP is not large enough. This error
exit normally occurs when the problem being solved is difficult (for example, there is a boundary
layer) and high accuracy is requested. A poor initial choice of mesh points will make this error exit
more likely.

IFAIL ¼ 3

The Newton iteration has failed to converge. There are several possible causes for this error:

(i) faulty coding in one of the Jacobian calculation routines;

(ii) if IJAC ¼ 0 then inaccurate Jacobians may have been calculated numerically (this is a very
unlikely cause); or,

(iii) a poor initial mesh or initial approximate solution has been selected either by you or by default
or there are not enough points in the initial mesh. Possibly, you should try the continuation
facility.

IFAIL ¼ 4

The Newton iteration has reached round-off error level. It could be however that the answer
returned is satisfactory. The error is likely to occur if too high an accuracy is requested.

IFAIL ¼ 5

The Jacobian calculated by JACOBG (or the equivalent matrix calculated by numerical
differentiation) is singular. This may occur due to faulty coding of JACOBG or, in some
circumstances, to a zero initial choice of approximate solution (such as is chosen when INIT ¼ 0).

IFAIL ¼ 6

There is no dependence on � when continuation is being used. This can be due to faulty coding of
JACEPS or JACGEP or, in some circumstances, to a zero initial choice of approximate solution
(such as is chosen when INIT ¼ 0).

IFAIL ¼ 7

DELEPS is required to be less than machine precision for continuation to proceed. It is likely that
either the problem (3) has no solution for some value near the current value of � (see the advisory
print out from D02RAF) or that the problem is so difficult that even with continuation it is unlikely
to be solved using this routine. If the latter cause is suspected then using more mesh points initially
may help.

IFAIL ¼ 8
IFAIL ¼ 9

A serious error has occurred in an internal call. Check all array subscripts and subroutine parameter
lists in calls to D02RAF. Seek expert help.

D02 – Ordinary Differential Equations D02RAF

Mark 24 D02RAF.9

7 Accuracy

The solution returned by the routine will be accurate to your tolerance as defined by the relation (5) except
in extreme circumstances. The final error estimate over the whole mesh for each component is given in the
array ABT. If too many points are specified in the initial mesh, the solution may be more accurate than
requested and the error may not be approximately equidistributed.

8 Further Comments

There are too many factors present to quantify the timing. The time taken by D02RAF is negligible only
on very simple problems.

You are strongly recommended to set IFAIL to obtain self-explanatory error messages, and also monitoring
information about the course of the computation. Monitoring information is written to a logical advisory
message unit which normally default to the same unit number as the error message unit (see Section 3.4 in
the Essential Introduction for details); the advisory message unit number can be changed by calling
X04ABF.

In the case where you wish to solve a sequence of similar problems, the use of the final mesh and solution
from one case as the initial mesh is strongly recommended for the next.

9 Example

This example solves the differential equation

y000 ¼ �yy00 � 2� 1� y02
� 	

with � ¼ 1 and boundary conditions

y 0ð Þ ¼ y0 0ð Þ ¼ 0, y0 10ð Þ ¼ 1

to an accuracy specified by TOL ¼ 1.0E�4. The continuation facility is used with the continuation
parameter � introduced as in the differential equation above and with DELEPS ¼ 0:1 initially. (The
continuation facility is not needed for this problem and is used here for illustration.)

9.1 Program Text

! D02RAF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

Module d02rafe_mod

! D02RAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: iset = 1, n = 3, nin = 5, nout = 6

Contains
Subroutine fcn(x,eps,y,f,n)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: eps, x
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(n)
Real (Kind=nag_wp), Intent (In) :: y(n)

! .. Executable Statements ..
f(1) = y(2)

D02RAF NAG Library Manual

D02RAF.10 Mark 24

f(2) = y(3)
f(3) = -y(1)*y(3) - two*(one-y(2)*y(2))*eps
Return

End Subroutine fcn

Subroutine g(eps,ya,yb,bc,n)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: eps
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: bc(n)
Real (Kind=nag_wp), Intent (In) :: ya(n), yb(n)

! .. Executable Statements ..
bc(1) = ya(1)
bc(2) = ya(2)
bc(3) = yb(2) - one
Return

End Subroutine g

Subroutine jaceps(x,eps,y,f,n)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: eps, x
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(n)
Real (Kind=nag_wp), Intent (In) :: y(n)

! .. Executable Statements ..
f(1:2) = zero
f(3) = -two*(one-y(2)*y(2))
Return

End Subroutine jaceps

Subroutine jacgep(eps,ya,yb,bcep,n)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: eps
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: bcep(n)
Real (Kind=nag_wp), Intent (In) :: ya(n), yb(n)

! .. Executable Statements ..
bcep(1:n) = zero
Return

End Subroutine jacgep

Subroutine jacobf(x,eps,y,f,n)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: eps, x
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(n,n)
Real (Kind=nag_wp), Intent (In) :: y(n)

! .. Executable Statements ..
f(1:n,1:n) = zero
f(1,2) = one
f(2,3) = one
f(3,1) = -y(3)
f(3,2) = two*two*y(2)*eps
f(3,3) = -y(1)
Return

End Subroutine jacobf

Subroutine jacobg(eps,ya,yb,aj,bj,n)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: eps
Integer, Intent (In) :: n

! .. Array Arguments ..

D02 – Ordinary Differential Equations D02RAF

Mark 24 D02RAF.11

Real (Kind=nag_wp), Intent (Out) :: aj(n,n), bj(n,n)
Real (Kind=nag_wp), Intent (In) :: ya(n), yb(n)

! .. Executable Statements ..
aj(1:n,1:n) = zero
bj(1:n,1:n) = zero
aj(1,1) = one
aj(2,2) = one
bj(3,2) = one
Return

End Subroutine jacobg
End Module d02rafe_mod

Program d02rafe

! D02RAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02raf, nag_wp, x04abf
Use d02rafe_mod, Only: fcn, g, iset, jaceps, jacgep, jacobf, jacobg, n, &

nin, nout
! .. Implicit None Statement ..

Implicit None
! .. Local Scalars ..

Real (Kind=nag_wp) :: deleps, tol
Integer :: ifail, ijac, init, j, ldy, &

liwork, lwork, mnp, np, numbeg, &
nummix, outchn

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: abt(:), work(:), x(:), y(:,:)
Integer, Allocatable :: iwork(:)

! .. Executable Statements ..
Write (nout,*) ’D02RAF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) mnp, np
ldy = n
liwork = mnp*(2*n+1) + n
lwork = mnp*(3*n*n+6*n+2) + 4*n*n + 3*n
Allocate (abt(n),work(lwork),x(mnp),y(ldy,mnp),iwork(liwork))

outchn = nout
Write (nout,*)
Call x04abf(iset,outchn)
Read (nin,*) tol, deleps
Read (nin,*) init, ijac, numbeg, nummix
Read (nin,*) x(1), x(np)

! ifail: behaviour on error exit
! =1 for quiet-soft exit
! * Set IFAIL to 111 to obtain monitoring information *

ifail = 1
Call d02raf(n,mnp,np,numbeg,nummix,tol,init,x,y,ldy,abt,fcn,g,ijac, &

jacobf,jacobg,deleps,jaceps,jacgep,work,lwork,iwork,liwork,ifail)

If (ifail==0 .Or. ifail==4) Then
Write (nout,*) ’Calculation using analytic Jacobians’
If (ifail==4) Write (nout,99996) ’On exit from D02RAF IFAIL = 4’
Write (nout,*)
Write (nout,99999) ’Solution on final mesh of ’, np, ’ points’
Write (nout,*) ’ X(I) Y1(I) Y2(I) Y3(I)’
Write (nout,99998)(x(j),y(1:n,j),j=1,np)
Write (nout,*)
Write (nout,*) ’Maximum estimated error by components’
Write (nout,99997) abt(1:n)

Else
Write (nout,99996) ’ ** D02RAF returned with IFAIL = ’, ifail

End If

D02RAF NAG Library Manual

D02RAF.12 Mark 24

99999 Format (1X,A,I2,A)
99998 Format (1X,F10.3,3F13.4)
99997 Format (11X,1P,3E13.2)
99996 Format (1X,A,I5)

End Program d02rafe

9.2 Program Data

D02RAF Example Program Data
40 17 : max mesh size, initial mesh size
1.0E-4 1.0E-1 : tol, deleps
0 1 2 0 : init, ijac, numbeg, nummix
0.0 10.0 : domain end-points

9.3 Program Results

D02RAF Example Program Results

Calculation using analytic Jacobians

Solution on final mesh of 33 points
X(I) Y1(I) Y2(I) Y3(I)

0.000 0.0000 0.0000 1.6872
0.062 0.0032 0.1016 1.5626
0.125 0.0125 0.1954 1.4398
0.188 0.0275 0.2816 1.3203
0.250 0.0476 0.3605 1.2054
0.375 0.1015 0.4976 0.9924
0.500 0.1709 0.6097 0.8048
0.625 0.2530 0.6999 0.6438
0.703 0.3095 0.7467 0.5563
0.781 0.3695 0.7871 0.4784
0.938 0.4978 0.8513 0.3490
1.094 0.6346 0.8977 0.2502
1.250 0.7776 0.9308 0.1763
1.458 0.9748 0.9598 0.1077
1.667 1.1768 0.9773 0.0639
1.875 1.3815 0.9876 0.0367
2.031 1.5362 0.9922 0.0238
2.188 1.6915 0.9952 0.0151
2.500 2.0031 0.9983 0.0058
2.656 2.1591 0.9990 0.0035
2.812 2.3153 0.9994 0.0021
3.125 2.6277 0.9998 0.0007
3.750 3.2526 1.0000 0.0001
4.375 3.8776 1.0000 0.0000
5.000 4.5026 1.0000 0.0000
5.625 5.1276 1.0000 -0.0000
6.250 5.7526 1.0000 0.0000
6.875 6.3776 1.0000 -0.0000
7.500 7.0026 1.0000 0.0000
8.125 7.6276 1.0000 -0.0000
8.750 8.2526 1.0000 0.0000
9.375 8.8776 1.0000 -0.0000

10.000 9.5026 1.0000 0.0000

Maximum estimated error by components
6.92E-05 1.81E-05 6.42E-05

D02 – Ordinary Differential Equations D02RAF

Mark 24 D02RAF.13

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

y

y’
an

d
y’

’

x

Example Program
Solution of Third-order BVP

y

y’

y’’

D02RAF NAG Library Manual

D02RAF.14 (last) Mark 24

	D02RAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	N
	MNP
	NP
	NUMBEG
	NUMMIX
	TOL
	INIT
	X
	Y
	LDY
	ABT
	FCN
	X in subprogram FCN
	EPS in subprogram FCN
	Y in subprogram FCN
	F in subprogram FCN
	N in subprogram FCN

	G
	EPS in subprogram G
	YA in subprogram G
	YB in subprogram G
	BC in subprogram G
	N in subprogram G

	IJAC
	JACOBF
	X in subprogram JACOBF
	EPS in subprogram JACOBF
	Y in subprogram JACOBF
	F in subprogram JACOBF
	N in subprogram JACOBF

	JACOBG
	EPS in subprogram JACOBG
	YA in subprogram JACOBG
	YB in subprogram JACOBG
	AJ in subprogram JACOBG
	BJ in subprogram JACOBG
	N in subprogram JACOBG

	DELEPS
	JACEPS
	X in subprogram JACEPS
	EPS in subprogram JACEPS
	Y in subprogram JACEPS
	F in subprogram JACEPS
	N in subprogram JACEPS

	JACGEP
	EPS in subprogram JACGEP
	YA in subprogram JACGEP
	YB in subprogram JACGEP
	BCEP in subprogram JACGEP
	N in subprogram JACGEP

	WORK
	LWORK
	IWORK
	LIWORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

