NAG Library Routine Document

 C06FBF

 C06FBF}

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06FBF calculates the discrete Fourier transform of a Hermitian sequence of n complex data values (using a work array for extra speed).

2 Specification

```
SUBROUTINE CO6FBF (X, N, WORK, IFAIL)
INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), WORK(N)
```


3 Description

Given a Hermitian sequence of n complex data values z_{j} (i.e., a sequence such that z_{0} is real and z_{n-j} is the complex conjugate of z_{j}, for $j=1,2, \ldots, n-1$), C 06 FBF calculates their discrete Fourier transform defined by

$$
\hat{x}_{k}=\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_{j} \times \exp \left(-i \frac{2 \pi j k}{n}\right), \quad k=0,1, \ldots, n-1
$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.) The transformed values \hat{x}_{k} are purely real (see also the C06 Chapter Introduction).

To compute the inverse discrete Fourier transform defined by

$$
\hat{y}_{k}=\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_{j} \times \exp \left(+i \frac{2 \pi j k}{n}\right)
$$

this routine should be preceded by forming the complex conjugates of the \hat{z}_{k}; that is, $x(k)=-x(k)$, for $k=n / 2+2, \ldots, n$.
C06FBF uses the fast Fourier transform (FFT) algorithm (see Brigham (1974)). There are some restrictions on the value of n (see Section 5).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall

5 Parameters

1: $\quad \mathrm{X}(\mathrm{N})-$ REAL (KIND=nag_wp) array
Input/Output
On entry: the sequence to be transformed stored in Hermitian form. If the data values z_{j} are written as $x_{j}+i y_{j}$, and if X is declared with bounds $(0: \mathrm{N}-1)$ in the subroutine from which C06FBF is called, then for $0 \leq j \leq n / 2, x_{j}$ is contained in $\mathrm{X}(j)$, and for $1 \leq j \leq(n-1) / 2, y_{j}$ is contained in $\mathrm{X}(n-j)$. (See also Section 2.1.2 in the C06 Chapter Introduction and Section 9.)
On exit: the components of the discrete Fourier transform \hat{x}_{k}. If X is declared with bounds $(0: \mathrm{N}-1)$ in the subroutine from which C06FBF is called, then \hat{x}_{k} is stored in $\mathrm{X}(k)$, for $k=0,1, \ldots, n-1$.

2: N - INTEGER Input
On entry: n, the number of data values. The largest prime factor of N must not exceed 19 , and the total number of prime factors of N , counting repetitions, must not exceed 20.

Constraint: $\mathrm{N}>1$.

3: $\operatorname{WORK}(\mathrm{N})$ - REAL (KIND=nag_wp) array Workspace
4: IFAIL - INTEGER Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
At least one of the prime factors of N is greater than 19 .
IFAIL $=2$
N has more than 20 prime factors.
IFAIL $=3$
On entry, $\mathrm{N} \leq 1$.
IFAIL $=4$
An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken is approximately proportional to $n \times \log n$, but also depends on the factorization of n. C06FBF is faster if the only prime factors of n are 2,3 or 5 ; and fastest of all if n is a power of 2 .

9 Example

This example reads in a sequence of real data values which is assumed to be a Hermitian sequence of complex data values stored in Hermitian form. The input sequence is expanded into a full complex sequence and printed alongside the original sequence. The discrete Fourier transform (as computed by

C06FBF) is printed out. It then performs an inverse transform using C06FAF and conjugation, and prints the sequence so obtained alongside the original data values.

9.1 Program Text

Program c06fbfe

```
    C06FBF Example Program Text
```

 Mark 24 Release. NAG Copyright 2012.
 .. Use Statements ..
 Use nag_library, Only: c06faf, c06fbf, c06gbf, c06gsf, nag_wp
 .. Implicit None Statement ..
 Implicit None
 .. Parameters ..
 Integer, Parameter : : nin \(=5\), nout \(=6\)
 .. Local Scalars .. : ieof, ifail, j, m, n
 .. Local Arrays ..
 Real (Kind=nag_wp), Allocatable : : \(u(:), v(:)\), work(:), \(x(:), x x(:)\)
 .. Executable Statements ..
 Write (nout,*) 'C06FBF Example Program Results'
 Skip heading in data file
 Read (nin,*)
 loop: Do
Read (nin,*,Iostat=ieof) n
If (ieof<0) Exit loop
Allocate (u(0:n-1),v(0:n-1),x(0:n-1),xx(0:n-1),work(n))
Read (nin,*) $x(0: n-1)$
$x x(0: n-1)=x(0: n-1)$
!
Convert x to separated real and imaginary parts for printing.
ifail = 0
$\mathrm{m}=1$
Call c06gsf(m,n,x,u,v,ifail)
ifail: behaviour on error exit
$=0$ for hard exit, $=1$ for quiet-soft, $=-1$ for noisy-soft
ifail $=0$
Call c06fbf(x,n,work,ifail)
Write (nout,*)
Write (nout,*) 'Original sequence and corresponding complex sequence'
Write (nout,*)
Write (nout,*) Data Real Imag'
Write (nout,*)
Write (nout,99999) (j,xx(j), , ,u(j),v(j),j=0,n-1)
Write (nout,*)
Write (nout,*) 'Components of discrete Fourier transform'
Write (nout,*)
Write (nout, 99998) ($j, x(j), j=0, n-1)$
Call c06faf(x, n, work, ifail)
Call c06gbf(x,n,ifail)
Write (nout,*)
Write (nout,*) 'Original sequence as restored by inverse transform'
Write (nout,*)
Write (nout,*) ' Original Restored'
Write (nout,*)
Write (nout, 99997) (j,xx(j),x(j),j=0,n-1)
Deallocate (u,v,x,xx,work)
End Do loop
99999 Format (1X,I5,F10.5,A,2F10.5)
99998 Format (1X,I5,F10.5)
99997 Format (1X,I5,2F10.5)
End Program c06fbfe

9.2 Program Data

```
C06FBF Example Program Data
    7
    0.34907
    0.54890
    0.74776
    0.94459
    1.13850
    1.32850
    1.51370
    : x
```


9.3 Program Results

C06FBF Example Program Results

Original sequence and corresponding complex sequence

	Data	Real	Imag
0	0.34907	0.34907	0.00000
1	0.54890	0.54890	1.51370
2	0.74776	0.74776	1.32850
3	0.94459	0.94459	1.13850
4	1.13850	0.94459	-1.13850
5	1.32850	0.74776	-1.32850
6	1.51370	0.54890	-1.51370

Components of discrete Fourier transform

0	1.82616
1	1.86862
2	-0.01750
3	0.50200
4	-0.59873
5	-0.03144
6	-2.62557

Original sequence as restored by inverse transform
Original Restored

0	0.34907	0.34907
1	0.54890	0.54890
2	0.74776	0.74776
3	0.94459	0.94459
4	1.13850	1.13850
5	1.32850	1.32850
6	1.51370	1.51370

