NAG Library Routine Document G12BAF Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. # 1 Purpose G12BAF returns parameter estimates and other statistics that are associated with the Cox proportional hazards model for fixed covariates. # 2 Specification ``` SUBROUTINE G12BAF (OFFSET, N, M, NS, Z, LDZ, ISZ, IP, T, IC, OMEGA, ISI, DEV, B, SE, SC, COV, RES, ND, TP, SUR, NDMAX, TOL, MAXIT, IPRINT, WK, IWK, IFAIL) INTEGER N, M, NS, LDZ, ISZ(M), IP, IC(N), ISI(*), ND, NDMAX, MAXIT, IPRINT, IWK(2*N), IFAIL REAL (KIND=nag_wp) Z(LDZ,M), T(N), OMEGA(*), DEV, B(IP), SE(IP), SC(IP), COV(IP*(IP+1)/2), RES(N), TP(NDMAX), SUR(NDMAX,*), TOL, WK(IP*(IP+9)/2+N) CHARACTER(1) OFFSET ``` # 3 Description The proportional hazard model relates the time to an event, usually death or failure, to a number of explanatory variables known as covariates. Some of the observations may be right-censored, that is the exact time to failure is not known, only that it is greater than a known time. Let t_i , for i = 1, 2, ..., n, be the failure time or censored time for the *i*th observation with the vector of p covariates z_i . It is assumed that censoring and failure mechanisms are independent. The hazard function, $\lambda(t, z)$, is the probability that an individual with covariates z fails at time t given that the individual survived up to time t. In the Cox proportional hazards model (see Cox (1972)) $\lambda(t, z)$ is of the form: $$\lambda(t, z) = \lambda_0(t) \exp(z^{\mathrm{T}}\beta + \omega)$$ where λ_0 is the base-line hazard function, an unspecified function of time, β is a vector of unknown parameters and ω is a known offset. Assuming there are ties in the failure times giving $n_d < n$ distinct failure times, $t_{(1)} < \cdots < t_{(n_d)}$ such that d_i individuals fail at $t_{(i)}$, it follows that the marginal likelihood for β is well approximated (see Kalbfleisch and Prentice (1980)) by: $$L = \prod_{i=1}^{n_d} \frac{\exp(s_i^{\mathsf{T}} \beta + \omega_i)}{\left[\sum_{l \in R(t_{(i)})} \exp(z_l^{\mathsf{T}} \beta + \omega_l)\right]^{d_i}}$$ (1) where s_i is the sum of the covariates of individuals observed to fail at $t_{(i)}$ and $R(t_{(i)})$ is the set of individuals at risk just prior to $t_{(i)}$, that is, it is all individuals that fail or are censored at time $t_{(i)}$ along with all individuals that survive beyond time $t_{(i)}$. The maximum likelihood estimates (MLEs) of β , given by $\hat{\beta}$, are obtained by maximizing (1) using a Newton-Raphson iteration technique that includes step halving and utilizes the first and second partial derivatives of (1) which are given by equations (2) and (3) below: $$U_j(\beta) = \frac{\partial \ln L}{\partial \beta_j} = \sum_{i=1}^{n_d} \left[s_{ji} - d_i \alpha_{ji}(\beta) \right] = 0$$ (2) for j = 1, 2, ..., p, where s_{ij} is the jth element in the vector s_i and $$lpha_{ji}(eta) = rac{\sum_{l \in Rig(t_{(i)}ig)} z_{jl} \mathrm{exp}ig(z_l^{\mathrm{T}}eta + \omega_lig)}{\sum_{l \in Rig(t_{(i)}ig)} \mathrm{exp}ig(z_l^{\mathrm{T}}eta + \omega_lig)}.$$ Similarly, $$I_{hj}(\beta) = -\frac{\partial^2 \ln L}{\partial \beta_h \partial \beta_j} = \sum_{i=1}^{n_d} d_i \gamma_{hji}$$ (3) where $$\gamma_{hji} = rac{\sum_{l \in R\left(t_{(i)} ight)} z_{hl} z_{jl} \exp\left(z_l^{\mathsf{T}}eta + \omega_l ight)}{\sum_{l \in R\left(t_{(i)} ight)} \exp\left(z_l^{\mathsf{T}}eta + \omega_l ight)} - lpha_{\mathsf{hi}}(eta) lpha_{ji}(eta), \qquad h, j = 1, \ldots, p.$$ $U_j(\beta)$ is the jth component of a score vector and $I_{hj}(\beta)$ is the (h,j) element of the observed information matrix $I(\beta)$ whose inverse $I(\beta)^{-1} = \left[I_{hj}(\beta)\right]^{-1}$ gives the variance-covariance matrix of β . It should be noted that if a covariate or a linear combination of covariates is monotonically increasing or decreasing with time then one or more of the β_i 's will be infinite. If $\lambda_0(t)$ varies across ν strata, where the number of individuals in the kth stratum is n_k , for $k=1,2,\ldots,\nu$ with $n=\sum_{k=1}^{\nu}n_k$, then rather than maximizing (1) to obtain $\hat{\beta}$, the following marginal likelihood is maximized: $$L = \prod_{k=1}^{\nu} L_k,\tag{4}$$ where L_k is the contribution to likelihood for the n_k observations in the kth stratum treated as a single sample in (1). When strata are included the covariate coefficients are constant across strata but there is a different base-line hazard function λ_0 . The base-line survivor function associated with a failure time $t_{(i)}$, is estimated as $\exp(-\hat{H}(t_{(i)}))$, where $$\hat{H}(t_{(i)}) = \sum_{t_{(j)} \le t_{(i)}} \left(\frac{d_i}{\sum_{l \in R(t_{(j)})} \exp\left(z_l^{\mathsf{T}} \hat{\beta} + \omega_l\right)} \right), \tag{5}$$ where d_i is the number of failures at time $t_{(i)}$. The residual for the lth observation is computed as: $$r(t_l) = \hat{H}(t_l) \exp\Bigl(z_l^{\mathrm{T}} \hat{eta} + \omega_l\Bigr)$$ where $\hat{H}(t_l) = \hat{H}(t_{(i)}), t_{(i)} \leq t_l < t_{(i+1)}$. The deviance is defined as $-2 \times$ (logarithm of marginal likelihood). There are two ways to test whether individual covariates are significant: the differences between the deviances of nested models can be compared with the appropriate χ^2 -distribution; or, the asymptotic normality of the parameter estimates can be used to form z tests by dividing the estimates by their standard errors or the score function for the model under the null hypothesis can be used to form z tests. ## 4 References Cox D R (1972) Regression models in life tables (with discussion) *J. Roy. Statist. Soc. Ser. B* **34** 187–220 Gross A J and Clark V A (1975) *Survival Distributions: Reliability Applications in the Biomedical Sciences* Wiley Kalbfleisch J D and Prentice R L (1980) The Statistical Analysis of Failure Time Data Wiley G12BAF.2 Mark 24 #### G12BAF #### 5 Parameters # 1: OFFSET – CHARACTER(1) Input On entry: indicates if an offset is to be used. OFFSET = 'Y' An offset must be included in OMEGA. OFFSET = 'N' No offset is included in the model. Constraint: OFFSET = 'Y' or 'N'. #### 2: N – INTEGER Input On entry: n, the number of data points. Constraint: $N \ge 2$. #### 3: M – INTEGER Input On entry: the number of covariates in array Z. Constraint: $M \ge 1$. #### 4: NS – INTEGER Input On entry: the number of strata. If NS > 0 then the stratum for each observation must be supplied in ISI. Constraint: $NS \ge 0$. # 5: Z(LDZ,M) – REAL (KIND=nag_wp) array Input On entry: the ith row must contain the covariates which are associated with the ith failure time given in T. #### 6: LDZ – INTEGER Input On entry: the first dimension of the array Z as declared in the (sub)program from which G12BAF is called. Constraint: $LDZ \ge N$. #### 7: ISZ(M) - INTEGER array Input On entry: indicates which subset of covariates is to be included in the model. $ISZ(j) \geq 1$ The *j*th covariate is included in the model. ISZ(j) = 0 The jth covariate is excluded from the model and not referenced. Constraint: $ISZ(j) \ge 0$ and at least one and at most $n_0 - 1$ elements of ISZ must be nonzero where n_0 is the number of observations excluding any with zero value of ISI. #### 8: IP – INTEGER Input On entry: the number of covariates included in the model as indicated by ISZ. Constraints: IP > 1 IP = number of nonzero values of ISZ. G12BAF NAG Library Manual 9: $T(N) - REAL (KIND=nag_wp) array$ Input On entry: the vector of n failure censoring times. 10: IC(N) - INTEGER array Input On entry: the status of the individual at time t given in T. IC(i) = 0 The *i*th individual has failed at time T(i). IC(i) = 1 The *i*th individual has been censored at time T(i). Constraint: IC(i) = 0 or 1, for i = 1, 2, ..., N. 11: OMEGA(*) – REAL (KIND=nag wp) array Input **Note**: the dimension of the array OMEGA must be at least N if OFFSET = 'Y', and at least 1 otherwise. On entry: if OFFSET = 'Y', the offset, ω_i , for i = 1, 2, ..., N. Otherwise OMEGA is not referenced. 12: ISI(∗) − INTEGER array Input **Note**: the dimension of the array ISI must be at least N if NS > 0, and at least 1 otherwise. On entry: if NS > 0, the stratum indicators which also allow data points to be excluded from the analysis. If NS = 0, ISI is not referenced. ISI(i) = k The *i*th data point is in the *k*th stratum, where k = 1, 2, ..., NS. ISI(i) = 0 The *i*th data point is omitted from the analysis. Constraint: if NS > 0, $0 \le ISI(i) \le NS$ and more than IP values of ISI(i) > 0, for i = 1, 2, ..., N. 13: DEV – REAL (KIND=nag wp) Output On exit: the deviance, that is $-2 \times (maximized log marginal likelihood)$. 14: $B(IP) - REAL (KIND=nag_wp) array$ Input/Output On entry: initial estimates of the covariate coefficient parameters β . B(j) must contain the initial estimate of the coefficient of the covariate in Z corresponding to the jth nonzero value of ISZ. Suggested value: in many cases an initial value of zero for $\mathrm{B}(j)$ may be used. For other suggestions see Section 8. On exit: B(j) contains the estimate $\hat{\beta}_i$, the coefficient of the covariate stored in the *i*th column of Z where *i* is the *j*th nonzero value in the array ISZ. 15: SE(IP) – REAL (KIND=nag wp) array Output On exit: SE(j) is the asymptotic standard error of the estimate contained in B(j) and score function in SC(j), for j = 1, 2, ..., IP. 16: SC(IP) – REAL (KIND=nag wp) array Output On exit: SC(j) is the value of the score function, $U_i(\beta)$, for the estimate contained in B(j). G12BAF.4 Mark 24 G12BAF # 17: $COV(IP \times (IP + 1)/2) - REAL (KIND=nag wp)$ array Output On exit: the variance-covariance matrix of the parameter estimates in B stored in packed form by column, i.e., the covariance between the parameter estimates given in B(i) and B(j), $j \ge i$, is stored in COV(j(j-1)/2+i). 18: RES(N) - REAL (KIND=nag wp) array Output On exit: the residuals, $r(t_l)$, for l = 1, 2, ..., N. 19: ND – INTEGER On exit: the number of distinct failure times. Output 20: TP(NDMAX) – REAL (KIND=nag_wp) array Output On exit: TP(i) contains the ith distinct failure time, for i = 1, 2, ..., ND. 21: SUR(NDMAX,*) - REAL (KIND=nag_wp) array Output **Note**: the second dimension of the array SUR must be at least max(NS, 1). On exit: if NS = 0, SUR(i, 1) contains the estimated survival function for the ith distinct failure time If NS > 0, SUR(i, k) contains the estimated survival function for the *i*th distinct failure time in the kth stratum. #### 22: NDMAX - INTEGER Input On entry: the dimension of the array TP and the first dimension of the array SUR as declared in the (sub)program from which G12BAF is called. Constraint: NDMAX > the number of distinct failure times. This is returned in ND. ## 23: TOL – REAL (KIND=nag wp) Input On entry: indicates the accuracy required for the estimation. Convergence is assumed when the decrease in deviance is less than $TOL \times (1.0 + CurrentDeviance)$. This corresponds approximately to an absolute precision if the deviance is small and a relative precision if the deviance is large. Constraint: $TOL \ge 10 \times machine precision$. ## 24: MAXIT – INTEGER Input On entry: the maximum number of iterations to be used for computing the estimates. If MAXIT is set to 0 then the standard errors, score functions, variance-covariance matrix and the survival function are computed for the input value of β in B but β is not updated. *Constraint*: $MAXIT \geq 0$. ### 25: IPRINT - INTEGER Input On entry: indicates if the printing of information on the iterations is required. IPRINT < 0 No printing. IPRINT > 1 The deviance and the current estimates are printed every IPRINT iterations. When printing occurs the output is directed to the current advisory message unit (see X04ABF). ``` 26: WK(IP \times (IP + 9)/2 + N) - REAL (KIND=nag_wp) array Workspace ``` 27: $IWK(2 \times N) - INTEGER$ array Workspace 28: IFAIL – INTEGER Input/Output On entry: IFAIL must be set to 0, -1 or 1. If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details. For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit. On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see Section 6). # 6 Error Indicators and Warnings If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF). Errors or warnings detected by the routine: ``` IFAIL = 1 ``` ``` On entry, OFFSET \neq 'Y' or 'N', or M < 1, or N < 2, or NS < 0, or IP < 1, or LDZ < N, or TOL < 10 \times \textit{machine precision}, or MAXIT < 0. ``` #### IFAIL = 2 ``` On entry, \operatorname{ISZ}(i) < 0 for some i, or the value of IP is incompatible with ISZ, or \operatorname{IC}(i) \neq 1 or 0. or \operatorname{ISI}(i) < 0 or \operatorname{ISI}(i) > \operatorname{NS}, or number of values of \operatorname{ISZ}(i) > 0 is greater than or equal to n_0, the number of observations excluding any with \operatorname{ISI}(i) = 0, or all observations are censored, i.e., \operatorname{IC}(i) = 1 for all i, \operatorname{NDMAX} is too small. ``` ## IFAIL = 3 The matrix of second partial derivatives is singular. Try different starting values or include fewer covariates. ## IFAIL = 4 Overflow has been detected. Try using different starting values. ## IFAIL = 5 Convergence has not been achieved in MAXIT iterations. The progress toward convergence can be examined by using a nonzero value of IPRINT. Any non-convergence may be due to a linear combination of covariates being monotonic with time. Full results are returned. G12BAF.6 Mark 24 IFAIL = 6 In the current iteration 10 step halvings have been performed without decreasing the deviance from the previous iteration. Convergence is assumed. # 7 Accuracy The accuracy is specified by TOL. ## **8** Further Comments G12BAF uses mean centering which involves subtracting the means from the covariables prior to computation of any statistics. This helps to minimize the effect of outlying observations and accelerates convergence. If the initial estimates are poor then there may be a problem with overflow in calculating $\exp(\beta^T z_i)$ or there may be non-convergence. Reasonable estimates can often be obtained by fitting an exponential model using G02GCF. # 9 Example The data are the remission times for two groups of leukemia patients (see page 242 of Gross and Clark (1975)). A dummy variable indicates which group they come from. An initial estimate is computed using the exponential model and then the Cox proportional hazard model is fitted and parameter estimates and the survival function are printed. ## 9.1 Program Text ``` Program g12bafe G12BAF Example Program Text 1 Mark 24 Release. NAG Copyright 2012. ! .. Use Statements .. Use nag_library, Only: g02gcf, g12baf, nag_wp .. Implicit None Statement .. ! Implicit None .. Parameters .. 1 :: nin = 5, nout = 6 Integer, Parameter 1 .. Local Scalars .. Real (Kind=nag_wp) :: dev, tol :: i, idf, ifail, ip, ip1, iprint, Integer irank, ldv, ldz, lisi, lomega, m, maxit, n, nd, ndmax, ns Character (1) :: offset .. Local Arrays .. Real (Kind=nag_wp), Allocatable :: b(:), cov(:), omega(:), res(:), sc(:), se(:), sur(:,:), t(:), tp(:), & v(:,:), wk(:), y(:), z(:,:) :: ic(:), isi(:), isz(:), iwk(:) Integer, Allocatable 1 .. Intrinsic Procedures .. Intrinsic :: count, eoshift, log, max, real ! .. Executable Statements .. Write (nout,*) 'G12BAF Example Program Results' Write (nout,*) Skip heading in data file Read (nin,*) Read in problem size ! Read (nin,*) n, m, ns, maxit, iprint, offset If (offset=='Y' .Or. offset=='y') Then lomega = n ``` G12BAF NAG Library Manual ``` Else lomega = 0 End If If (ns>0) Then lisi = n Else lisi = 0 End If ldz = n ndmax = n ldv = n Allocate (z(ldz,m),isz(m),t(n),ic(n),omega(lomega),isi(lisi),res(n), & tp(ndmax), sur(ndmax, max(ns, 1)), iwk(2*n), y(n)) Read in the data If (ns>0) Then If (lomega==0) Then Read (nin, *)(t(i), z(i, 1:m), ic(i), isi(i), i=1, n) Read (nin,*)(t(i),z(i,1:m),ic(i),isi(i),omega(i),i=1,n) End If Else If (lomega==0) Then Read (nin,*)(t(i),z(i,1:m),ic(i),i=1,n) Else Read (nin,*)(t(i),z(i,1:m),ic(i),omega(i),i=1,n) End If End If Read in the variable indication Read (nin,*) isz(1:m) Calculate number of parameters in the model ! ip = count(isz(1:m)>0) We are fitting a mean in the exponential model, so arrays used by GO2GCF 1 need to be based on IP + 1 ip1 = ip + 1 Allocate (b(ip1),se(ip1),sc(ip),cov(ip1*(ip1+1)/2),wk(ip1*(ip1+ & 9)/2+n),v(1dv,ip1+7)) ! Specifiy tolerance to use tol = 5.0E-5_nag_wp ! Get initial estimates by fitting an exponential model Do i = 1, n y(i) = 1.0E0_nag_wp - real(ic(i),kind=nag_wp) v(i,7) = log(t(i)) End Do ! Fit exponential model ifail = -1 Call g02gcf('L','M','Y','U',n,z,ldz,m,isz,ip1,y,res,0.0E0_nag_wp,dev, & idf,b,irank,se,cov,v,ldv,tol,maxit,0,0.0E0_nag_wp,wk,ifail) If (ifail/=0) Then If (ifail<5) Then Go To 100 End If End If Check exponential model was of full rank ! If (irank/=ip1) Then Write (nout,*) ' WARNING: covariates not of full rank' End If Move all parameter estimates down one so as to drop the parameter estimate for the mean. \, ! b = eoshift(b,1) Fit Cox proportional hazards model ifail = -1 ``` G12BAF.8 Mark 24 ``` Call g12baf('No-offset',n,m,ns,z,ldz,isz,ip,t,ic,omega,isi,dev,b,se,sc, & cov,res,nd,tp,sur,ndmax,tol,maxit,iprint,wk,iwk,ifail) If (ifail/=0) Then If (ifail<5) Then Go To 100 End If End If ! Display results Write (nout,*) ' Parameter Estimate', ' Standard Error' Write (nout,*) Write (nout, 99999)(i,b(i),se(i),i=1,ip) Write (nout,*) Write (nout,99998) ' Deviance = ', dev Write (nout,*) Write (nout,*) ' Time Survivor Function' Write (nout,*) ns = max(ns, 1) Write (nout,99997)(tp(i),sur(i,1:ns),i=1,nd) 100 Continue 99999 Format (I6,10X,F8.4,10X,F8.4) 99998 Format (A,E13.4) 99997 Format (F10.0,5X,F8.4) End Program g12bafe ``` # 9.2 Program Data ``` G12BAF Example Program Data 42 1 0 20 0 'N' : N,M,NS,MAXIT,IPRINT,OFFSET 1 0 0 1 0 0 2 0 0 2 0 0 3 0 0 4 0 0 4 0 0 5 0 0 5 0 0 8 0 0 8 0 0 8 0 0 8 0 0 11 0 0 11 0 0 12 0 0 12 0 0 15 0 0 17 0 0 22 0 0 23 0 0 6 1 0 6 1 0 6 1 0 7 1 0 10 1 0 13 1 0 16 1 0 22 1 0 23 1 0 6 1 1 9 1 1 10 1 1 11 1 1 17 1 1 19 1 1 20 1 1 25 1 1 ``` G12BAF NAG Library Manual ``` 32 1 1 32 1 1 34 1 1 35 1 1 : T,Z,IC 1 : ISZ ``` # 9.3 Program Results G12BAF Example Program Results | Parameter | Estimate | Standard Error | | |--|--|----------------|--| | 1 | -1.5091 | 0.4096 | | | Deviance = | 0.1728E+03 | | | | Time | Survivor Function | | | | 1.
2.
3.
4.
5.
6. | 0.9640
0.9264
0.9065
0.8661
0.8235
0.7566 | | | | 7.
8.
10.
11.
12.
13.
15.
16.
17.
22. | 0.7343
0.6506
0.6241
0.5724
0.5135
0.4784
0.4447
0.4078
0.3727
0.2859
0.1908 | | | G12BAF.10 (last) Mark 24