
NAG Library Routine Document

G05KJF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

G05KJF allows for the generation of multiple, independent, sequences of pseudorandom numbers using the
skip-ahead method.

The base pseudorandom number sequence defined by STATE is advanced n places.

2 Specification

SUBROUTINE G05KJF (N, STATE, IFAIL)

INTEGER N, STATE(*), IFAIL

3 Description

G05KJF adjusts a base generator to allow multiple, independent, sequences of pseudorandom numbers to
be generated via the skip-ahead method (see the G05 Chapter Introduction for details).

If, prior to calling G05KJF the base generator defined by STATE would produce random numbers
x1; x2; x3; . . ., then after calling G05KJF the generator will produce random numbers xnþ1; xnþ2; xnþ3; . . ..

One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or G05KGF
(for a non-repeatable sequence) must be called prior to the first call to G05KJF.

The skip-ahead algorithm can be used in conjunction with any of the six base generators discussed in
Chapter G05.

4 References

Haramoto H, Matsumoto M, Nishimura T, Panneton F and L’Ecuyer P (2008) Efficient jump ahead for F2-
linear random number generators INFORMS J. on Computing 20(3) 385–390

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

5 Parameters

1: N – INTEGER Input

On entry: n, the number of places to skip ahead.

Constraint: N � 0.

2: STATEð�Þ – INTEGER array Communication Array

Note: the actual argument supplied must be the array STATE supplied to the initialization routines
G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.

On exit: contains updated information on the state of the generator.

3: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

G05 – Random Number Generators G05KJF

Mark 24 G05KJF.1



For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 0.

IFAIL ¼ 2

On entry, STATE vector was not initialized or has been corrupted.

IFAIL ¼ 3

On entry, cannot use the skip-ahead method with the base generator defined by STATE.

IFAIL ¼ 4

On entry, the base generator is Mersenne Twister, but the STATE vector defined on initialization is
not large enough to perform a skip-ahead. See the initialization routine G05KFF or G05KGF.

7 Accuracy

Not applicable.

8 Further Comments

Calling G05KJF and then generating a series of uniform values using G05SAF is more efficient than, but
equivalent to, calling G05SAF and discarding the first n values. This may not be the case for distributions
other than the uniform, as some distributional generators require more than one uniform variate to generate
a single draw from the required distribution.

To skip ahead k�m places you can either

(a) call G05KJF once with N ¼ k�m, or

(b) call G05KJF k times with N ¼ m, using the STATE vector output by the previous call as input to the
next call

both approaches would result in the same sequence of values. When working in a multithreaded
environment, where you want to generate (at most) m values on each of K threads, this would translate
into either

(a) spawning the K threads and calling G05KJF once on each thread with N ¼ k� 1ð Þ �m, where k is a
thread ID, taking a value between 1 and K, or

(b) calling G05KJF on a single thread with N ¼ m, spawning the K threads and then calling G05KJF a
further k� 1 times on each of the thread.

Due to the way skip ahead is implemented for the Mersenne Twister, approach (a) will tend to be more
efficient if more than 30 threads are being used (i.e., K > 30), otherwise approach (b) should probably be

G05KJF NAG Library Manual

G05KJF.2 Mark 24



used. For all other base generators, approach (a) should be used. See the G05 Chapter Introduction for
more details.

9 Example

This example initializes a base generator using G05KFF and then uses G05KJF to advance the sequence
50 places before generating five variates from a uniform distribution using G05SAF.

9.1 Program Text

Program g05kjfe

! G05KJF Example Program Text

! Mark 24 Release. NAG Copyright 2012.

! .. Use Statements ..
Use nag_library, Only: g05kff, g05kjf, g05saf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: lseed = 1, nin = 5, nout = 6

! .. Local Scalars ..
Integer :: genid, ifail, lstate, n, nv, subid

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:)
Integer :: seed(lseed)
Integer, Allocatable :: state(:)

! .. Executable Statements ..
Write (nout,*) ’G05KJF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the base generator information and seed
Read (nin,*) genid, subid, seed(1)

! Query G05KFF to get the require length of STATE array
lstate = 0
Allocate (state(lstate))
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

! Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

! Read in the skip ahead and sample size
Read (nin,*) n, nv

Allocate (x(nv))

! Advance the sequence N places
ifail = 0
Call g05kjf(n,state,ifail)

! Generate a NV variates from a uniform distribution
ifail = 0
Call g05saf(nv,state,x,ifail)

G05 – Random Number Generators G05KJF

Mark 24 G05KJF.3



! Display the variates
Write (nout,99999) x(1:nv)

99999 Format (1X,F10.4)
End Program g05kjfe

9.2 Program Data

G05KJF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED(1)
50 5 :: N,NV

9.3 Program Results

G05KJF Example Program Results

0.2071
0.8413
0.8817
0.5494
0.5248

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

G05KJF NAG Library Manual

G05KJF.4 (last) Mark 24


	G05KJF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	N
	STATE
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the 

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction




