# **NAG Library Routine Document** ## G02CFF Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. # 1 Purpose G02CFF reorders the elements in two vectors (typically vectors of means and standard deviations), and the rows and columns in two matrices (typically either matrices of sums of squares and cross-products of deviations from means and Pearson product-moment correlation coefficients, or matrices of sums of squares and cross-products about zero and correlation-like coefficients). # 2 Specification # 3 Description Input to the routine consists of: (a) A list of the order in which the n variables are to be arranged on exit: $$i_1, i_2, i_3, \ldots, i_n$$ . (b) A vector of means: $$(\bar{x}_1, \bar{x}_2, \bar{x}_3, \dots, \bar{x}_n).$$ (c) A vector of standard deviations: $$(s_1, s_2, s_3, \ldots, s_n).$$ (d) A matrix of sums of squares and cross-products of deviations from means: $$\begin{pmatrix} S_{11} & S_{12} & S_{13} & \dots & S_{1n} \\ S_{21} & S_{22} & & & & \\ S_{31} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ S_{n1} & S_{n2} & \dots & \dots & S_{nn} \end{pmatrix}.$$ (e) A matrix of correlation coefficients: On exit from the routine, these same vectors and matrices are reordered, in the manner specified, and contain the following information: Mark 24 G02CFF.1 (i) The vector of means: $$(\bar{x}_{i_1}, \bar{x}_{i_2}, \bar{x}_{i_3}, \dots, \bar{x}_{i_n}).$$ (ii) The vector of standard deviations: $$(s_{i_1}, s_{i_2}, s_{i_3}, \dots s_{i_n}).$$ (iii) The matrix of sums of squares and cross-products of deviations from means: (iv) The matrix of correlation coefficients: **Note:** for sums of squares of cross-products of deviations about zero and correlation-like coefficients $S_{ij}$ and $R_{ij}$ should be replaced by $\tilde{S}_{ij}$ and $\tilde{R}_{ij}$ in the description of the input and output above. #### 4 References None. #### 5 Parameters 1: N – INTEGER Input On entry: n, the number of variables in the input data. Constraint: $N \ge 2$ . 2: KORDER(N) – INTEGER array Input On entry: KORDER(i) must be set to the number of the original variable which is to be the ith variable in the re-arranged data, for i = 1, 2, ..., n. Constraint: $1 \leq \text{KORDER}(i) \leq N$ , for i = 1, 2, ..., n. 3: XBAR(N) – REAL (KIND=nag wp) array Input/Output On entry: XBAR(i) must be set to the mean of variable i, for i = 1, 2, ..., n. On exit: XBAR(i) contains the mean of variable k where k = KORDER(i), for i = 1, 2, ..., n. 4: STD(N) – REAL (KIND=nag\_wp) array Input/Output On entry: STD(i) must be set to the standard deviation of variable i, for i = 1, 2, ..., n. On exit: STD(i) contains the standard deviation of variable k where k = KORDER(i), for i = 1, 2, ..., n. G02CFF.2 Mark 24 ### 5: SSP(LDSSP,N) - REAL (KIND=nag\_wp) array Input/Output On entry: SSP(i, j) must be set to the sum of cross-products of deviations from means $S_{ij}$ (or about zero $\tilde{S}_{ij}$ ) for variables i and j, for i = 1, 2, ..., n and j = 1, 2, ..., n. On exit: SSP(i, j) contains the sum of cross-products of deviations from means $S_{kl}$ (or about zero $\tilde{S}_{kl}$ ) for variables k and l, where k = KORDER(i), and l = KORDER(j), i, j = 1, 2, ..., n. #### 6: LDSSP – INTEGER Input On entry: the first dimension of the array SSP as declared in the (sub)program from which G02CFF is called. Constraint: LDSSP $\geq N$ . #### 7: R(LDR,N) – REAL (KIND=nag\_wp) array Input/Output On entry: R(i, j) must be set to the Pearson product-moment correlation coefficient $R_{ij}$ (or the correlation-like coefficient $\tilde{R}_{ij}$ ) for variables i and j, for i = 1, 2, ..., n and j = 1, 2, ..., n. On exit: R(i,j) contains the Pearson product-moment correlation coefficient $R_{kl}$ (or the correlation-like coefficient $\tilde{R}_{kl}$ ) for variables k and l, where k = KORDER(i) and l = KORDER(j), for $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, n$ . ### 8: LDR – INTEGER Innu On entry: the first dimension of the array R as declared in the (sub)program from which G02CFF is called. *Constraint*: LDR $\geq$ N. 9: KWORK(N) – INTEGER array Workspace #### 10: IFAIL - INTEGER Input/Output On entry: IFAIL must be set to 0, -1 or 1. If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details. For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit. On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see Section 6). # 6 Error Indicators and Warnings If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF). Errors or warnings detected by the routine: IFAIL = 1 On entry, N < 2. IFAIL = 2 On entry, LDSSP < N, or LDR < N. *Mark* 24 *G02CFF.3* G02CFF NAG Library Manual ``` \begin{aligned} \text{IFAIL} &= 3 \\ \text{On entry, } & \text{KORDER}(i) < 1, \\ \text{or } & \text{KORDER}(i) > \text{N for some } i = 1, 2, \dots, n. \end{aligned} ``` On entry, there is not a one-to-one correspondence between the old variables and the new variables; at least one of the original variables is not included in the new set, and consequently at least one other variable has been included more than once. ## 7 Accuracy Not applicable. IFAIL = 4 #### **8 Further Comments** The time taken by G02CFF depends on n and the amount of re-arrangement involved. The routine is intended primarily for use when a set of variables is to be reordered for use in a regression, and is described accordingly. There is however no reason why the routine should not also be used to reorder vectors and matrices which contain any other non-statistical information; the matrices need not be symmetric. The routine may be used either with sums of squares and cross-products of deviations from means and Pearson product-moment correlation coefficients in connection with a regression involving a constant, or with sums of squares and cross-products about zero and correlation-like coefficients in connection with a regression with no constant. # 9 Example This example reads in the means, standard deviations, sums of squares and cross-products, and correlation coefficients for three variables. The vectors and matrices are reordered so that they contain the means, standard deviations, sums of squares and cross-products, and correlation coefficients for the first, third and second variables (in that order). Finally the reordered vectors and matrices are printed. # 9.1 Program Text ``` Program g02cffe GO2CFF Example Program Text Mark 24 Release. NAG Copyright 2012. 1 1 .. Use Statements .. Use nag_library, Only: g02cff, nag_wp, x04caf 1 .. Implicit None Statement .. Implicit None .. Parameters .. ! :: nin = 5, nout = 6 Integer, Parameter .. Local Scalars .. :: i, ifail, ldr, ldssp, n Integer Character (80) :: fmt ! .. Local Arrays .. Real (Kind=nag\_wp), Allocatable :: r(:,:), ssp(:,:), std(:), xbar(:) Integer, Allocatable :: korder(:), kwork(:) .. Executable Statements .. Write (nout,*) 'GO2CFF Example Program Results' Write (nout,*) Skip heading in data file Read (nin,*) Read in the problem size Read (nin,*) n ``` G02CFF.4 Mark 24 ``` ldr = n ldssp = n Allocate (r(ldr,n),ssp(ldssp,n),std(n),xbar(n),korder(n),kwork(n)) Read in data Read (nin,*) xbar(1:n) Read (nin,*) std(1:n) Read (nin,*)(ssp(i,1:n),i=1,n) Read (nin,*)(r(i,1:n),i=1,n) Read in the reordering vector Read (nin,*) korder(1:n) Format for displaying vectors Write (fmt, 99999) '(1x,A,', n, '(1X,F10.4))' Display data Write (nout,fmt) 'Original vector XBAR : ', xbar(1:n) Write (nout,*) Write (nout,fmt) 'Original vector STD : ', std(1:n) Write (nout,*) Flush (nout) ifail = 0 Call x04caf('General',' ',n,n,ssp,ldssp,'Original matrix SSP :',ifail) Write (nout,*) Flush (nout) ifail = 0 Call x04caf('General',' ',n,n,r,ldr,'Original matrix R :',ifail) Write (nout,*) Reorder the results ifail = 0 Call g02cff(n,korder,xbar,std,ssp,ldssp,r,ldr,kwork,ifail) Display results Write (nout, fmt) 'New vector XBAR: ', xbar(1:n) Write (nout,*) Write (nout,fmt) 'New vector STD : ', std(1:n) Write (nout,*) Flush (nout) ifail = 0 Call x04caf('General',' ',n,n,ssp,ldssp,'New matrix SSP :',ifail) Write (nout,*) Flush (nout) ifail = 0 Call x04caf('General',' ',n,n,r,ldr,'New matrix R :',ifail) 99999 Format (A,IO,A) End Program g02cffe ``` #### 9.2 Program Data ``` GO2CFF Example Program Data 3 :: N 5.4000 5.8000 2.8000 :: XBAR 1.9240 :: STD 4.9800 5.0695 99.2000 -57.6000 6.4000 -57.6000 102.8000 -29.2000 6.4000 -29.2000 14.8000 :: End of SSP 1.0000 -0.5704 0.1670 -0.5704 1.0000 -0.7486 0.1670 -0.7486 1.0000 :: End of R :: KORDER 1 3 2 ``` Mark 24 G02CFF.5 G02CFF NAG Library Manual ### 9.3 Program Results ``` GO2CFF Example Program Results 5.8000 Original vector XBAR : 5.4000 2.8000 Original vector STD : 4.9800 5.0695 1.9240 Original matrix SSP : 1 6.4000 -29.2000 99.2000 -57.6000 -57.6000 102.8000 6.4000 -29.2000 2 -57.6000 14.8000 3 Original matrix R : 1 2 3 1 1.0000 -0.5704 0.1670 2 -0.5704 1.0000 -0.7486 3 0.1670 -0.7486 1.0000 New vector XBAR : 5.4000 2.8000 5.8000 New vector STD : 4.9800 1.9240 5.0695 New matrix SSP : 1 99.2000 6.4000 -57.6000 6.4000 14.8000 -29.2000 -57.6000 -29.2000 102.8000 New matrix R : 1 2 1 1.0000 0.1670 -0.5704 2 0.1670 1.0000 -0.7486 3 -0.5704 -0.7486 1.0000 ``` G02CFF.6 (last) Mark 24