NAG Library Routine Document F08SSF (ZHEGST)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

F08SSF (ZHEGST) reduces a complex Hermitian-definite generalized eigenproblem $Az = \lambda Bz$, $ABz = \lambda z$ or $BAz = \lambda z$ to the standard form $Cy = \lambda y$, where A is a complex Hermitian matrix and B has been factorized by F07FRF (ZPOTRF).

2 Specification

```
SUBROUTINE FO8SSF (ITYPE, UPLO, N, A, LDA, B, LDB, INFO)

INTEGER ITYPE, N, LDA, LDB, INFO

COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)

CHARACTER(1) UPLO
```

The routine may be called by its LAPACK name zhegst.

3 Description

To reduce the complex Hermitian-definite generalized eigenproblem $Az = \lambda Bz$, $ABz = \lambda z$ or $BAz = \lambda z$ to the standard form $Cy = \lambda y$, F08SSF (ZHEGST) must be preceded by a call to F07FRF (ZPOTRF) which computes the Cholesky factorization of B; B must be positive definite.

The different problem types are specified by the parameter ITYPE, as indicated in the table below. The table shows how C is computed by the routine, and also how the eigenvectors z of the original problem can be recovered from the eigenvectors of the standard form.

ITYPE	Problem	UPLO	В	C	z
1	$Az = \lambda Bz$	'U' 'L'	$\begin{array}{c} U^{\rm H}U \\ LL^{\rm H} \end{array}$	$U^{-\mathrm{H}}AU^{-1}$ $L^{-1}AL^{-\mathrm{H}}$	$\begin{array}{c} U^{-1}y \\ L^{-H}y \end{array}$
2	$ABz = \lambda z$	'U' 'L'	$\begin{array}{c} U^{\rm H} U \\ L L^{\rm H} \end{array}$	$UAU^{\rm H} \\ L^{\rm H}AL$	$\begin{array}{c} U^{-1}y \\ L^{-H}y \end{array}$
3	$BAz = \lambda z$	'U' 'L'	$\begin{array}{c} U^{\rm H} U \\ L L^{\rm H} \end{array}$	$UAU^{\rm H} \\ L^{\rm H}AL$	$\begin{array}{c} U^{\rm H}y \\ Ly \end{array}$

4 References

Golub G H and Van Loan C F (1996) *Matrix Computations* (3rd Edition) Johns Hopkins University Press, Baltimore

Mark 24 F08SSF.1

5 Parameters

1: ITYPE – INTEGER

On entry: indicates how the standard form is computed.

ITYPE = 1

if UPLO = 'U',
$$C = U^{-H}AU^{-1}$$
;
if UPLO = 'L', $C = L^{-1}AL^{-H}$.

ITYPE = 2 or 3

if UPLO = 'U',
$$C = UAU^{H}$$
;
if UPLO = 'L', $C = L^{H}AL$.

Constraint: ITYPE = 1, 2 or 3.

2: UPLO - CHARACTER(1)

Input

Input

On entry: indicates whether the upper or lower triangular part of A is stored and how B has been factorized.

UPLO = 'U'

The upper triangular part of A is stored and $B = U^{H}U$.

UPLO = 'L'

The lower triangular part of A is stored and $B = LL^{H}$.

Constraint: UPLO = 'U' or 'L'.

3: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: $N \ge 0$.

4: A(LDA,*) - COMPLEX (KIND=nag wp) array

Input/Output

Note: the second dimension of the array A must be at least max(1, N).

On entry: the n by n Hermitian matrix A.

If UPLO = 'U', the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.

If UPLO = 'L', the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.

On exit: the upper or lower triangle of A is overwritten by the corresponding upper or lower triangle of C as specified by ITYPE and UPLO.

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08SSF (ZHEGST) is called.

Constraint: LDA $\geq \max(1, N)$.

6: B(LDB,*) - COMPLEX (KIND=nag wp) array

Input

Note: the second dimension of the array B must be at least max(1, N).

On entry: the Cholesky factor of B as specified by UPLO and returned by F07FRF (ZPOTRF).

F08SSF.2 Mark 24

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F08SSF (ZHEGST) is called.

Constraint: LDB $\geq \max(1, N)$.

8: INFO – INTEGER Output

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the routine:

INFO < 0

If INFO = -i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B^{-1} (if ITYPE = 1) or B (if ITYPE = 2 or 3). When F08SSF (ZHEGST) is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion. See the document for F08SNF (ZHEGV) for further details.

8 Further Comments

The total number of real floating point operations is approximately $4n^3$.

The real analogue of this routine is F08SEF (DSYGST).

9 Example

This example computes all the eigenvalues of $Az = \lambda Bz$, where

$$A = \begin{pmatrix} -7.36 + 0.00i & 0.77 - 0.43i & -0.64 - 0.92i & 3.01 - 6.97i \\ 0.77 + 0.43i & 3.49 + 0.00i & 2.19 + 4.45i & 1.90 + 3.73i \\ -0.64 + 0.92i & 2.19 - 4.45i & 0.12 + 0.00i & 2.88 - 3.17i \\ 3.01 + 6.97i & 1.90 - 3.73i & 2.88 + 3.17i & -2.54 + 0.00i \end{pmatrix}$$

and

$$B = \begin{pmatrix} 3.23 + 0.00i & 1.51 - 1.92i & 1.90 + 0.84i & 0.42 + 2.50i \\ 1.51 + 1.92i & 3.58 + 0.00i & -0.23 + 1.11i & -1.18 + 1.37i \\ 1.90 - 0.84i & -0.23 - 1.11i & 4.09 + 0.00i & 2.33 - 0.14i \\ 0.42 - 2.50i & -1.18 - 1.37i & 2.33 + 0.14i & 4.29 + 0.00i \end{pmatrix}$$

Here B is Hermitian positive definite and must first be factorized by F07FRF (ZPOTRF). The program calls F08SSF (ZHEGST) to reduce the problem to the standard form $Cy = \lambda y$; then F08FSF (ZHETRD) to reduce C to tridiagonal form, and F08JFF (DSTERF) to compute the eigenvalues.

9.1 Program Text

Program f08ssfe

- ! FO8SSF Example Program Text
- ! Mark 24 Release. NAG Copyright 2012.
- ! .. Use Statements .. Use nag_library, Only: dsterf, nag_wp, zhegst, zhetrd, zpotrf

Mark 24 F08SSF.3

F08SSF NAG Library Manual

```
.. Implicit None Statement ..
     Implicit None
      .. Parameters ..
!
      Integer, Parameter
                                       :: nin = 5, nout = 6
      .. Local Scalars ..
1
                                        :: i, info, lda, ldb, lwork, n
      Integer
     Character (1)
                                        :: uplo
      .. Local Arrays ..
      Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), tau(:), work(:)
     Real (Kind=nag_wp), Allocatable :: d(:), e(:)
!
      .. Executable Statements ..
      Write (nout,*) 'F08SSF Example Program Results'
      Skip heading in data file
     Read (nin,*)
      Read (nin,*) n
      lda = n
      ldb = n
      lwork = 64*n
     Allocate (a(lda,n),b(ldb,n),tau(n),work(lwork),d(n),e(n-1))
     Read A and B from data file
     Read (nin,*) uplo
      If (uplo=='U') Then
       Read (nin,*)(a(i,i:n),i=1,n)
        Read (nin,*)(b(i,i:n),i=1,n)
     Else If (uplo=='L') Then
        Read (nin,*)(a(i,1:i),i=1,n)
        Read (nin,*)(b(i,1:i),i=1,n)
     End If
      Compute the Cholesky factorization of B
      The NAG name equivalent of zpotrf is f07frf
      Call zpotrf(uplo,n,b,ldb,info)
      Write (nout,*)
      If (info>0) Then
       Write (nout,*) 'B is not positive definite.'
        Reduce the problem to standard form C*y = lambda*y, storing
!
!
        the result in A
        The NAG name equivalent of zhegst is f08ssf
!
        Call zhegst(1,uplo,n,a,lda,b,ldb,info)
        Reduce C to tridiagonal form T = (Q**H)*C*Q
        The NAG name equivalent of zhetrd is f08fsf
1
        Call zhetrd(uplo,n,a,lda,d,e,tau,work,lwork,info)
        Calculate the eigenvalues of T (same as C)
!
        The NAG name equivalent of dsterf is f08jff
        Call dsterf(n,d,e,info)
        If (info>0) Then
          Write (nout,*) 'Failure to converge.'
        Else
         Print eigenvalues
!
          Write (nout,*) 'Eigenvalues'
          Write (nout,99999) d(1:n)
        End If
     End If
99999 Format (3X, (9F8.4))
   End Program f08ssfe
```

F08SSF.4 Mark 24

9.2 Program Data

9.3 Program Results

```
F08SSF Example Program Results
Eigenvalues
-5.9990 -2.9936 0.5047 3.9990
```

Mark 24 F08SSF.5 (last)