F08 — Least-squares and Eigenvalue Problems (LAPACK) FOSNGF

NAG Library Routine Document
FOSNGF (DORMHR)

Note: before using this routine, please read the Users” Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

FOSNGF (DORMHR) multiplies an arbitrary real matrix C by the real orthogonal matrix () which was
determined by FOSNEF (DGEHRD) when reducing a real general matrix to Hessenberg form.

2 Specification

SUBROUTINE FO8NGF (SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC, WORK, &
LWORK, INFO)

INTEGER M, N, ILO, IHI, LDA, LDC, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), C(LDC,*), WORK(max(1l,LWORK))
CHARACTER (1) SIDE, TRANS

The routine may be called by its LAPACK name dormhr.

3 Description

FOSNGF (DORMHR) is intended to be used following a call to FOSNEF (DGEHRD), which reduces a real

general matrix A to upper Hessenberg form H by an orthogonal similarity transformation: A = QHQ".
FOSNEF (DGEHRD) represents the matrix @) as a product of ¢,; —), elementary reflectors. Here ¢;, and
ip; are values determined by FOSNHF (DGEBAL) when balancing the matrix; if the matrix has not been
balanced, 4, = 1 and i},; = n.

This routine may be used to form one of the matrix products
QC,Q'C,CQ or CQ,
overwriting the result on C' (which may be any real rectangular matrix).

A common application of this routine is to transform a matrix V' of eigenvectors of H to the matrix OV of
eigenvectors of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters
1: SIDE — CHARACTER(1) Input

On entry: indicates how Q or Q" is to be applied to C.

SIDE ='L'
Q or Q" is applied to C from the left.

SIDE = 'R’
Q or Q" is applied to C' from the right.

Constraint: SIDE ='L' or 'R".

Mark 24 FOSNGE. 1

FOSNGF NAG Library Manual

10:

TRANS — CHARACTER(1) Input
On entry: indicates whether Q or Q' is to be applied to C.

TRANS ='N'
Q is applied to C.

TRANS ='T'
Q" is applied to C.

Constraint: TRANS ='N' or 'T".

M — INTEGER Input
On entry: m, the number of rows of the matrix C; m is also the order of @ if SIDE ='L".
Constraint: M > 0.

N — INTEGER Input
On entry: n, the number of columns of the matrix C; n is also the order of Q if SIDE ='R".
Constraint: N > 0.

ILO — INTEGER Input
IHI — INTEGER Input

On entry: these must be the same parameters ILO and IHI, respectively, as supplied to FOSNEF
(DGEHRD).

Constraints:

if SIDE='L' and M >0, 1 < ILO < [HI < M;
if SIDE ='L' and M =0, ILO = 1 and IHI = 0;
if SIDE='R'and N >0, 1 <ILO <IHI < N;
if SIDE ='R' and N =0, ILO =1 and IHI = 0.
A(LDA,x) — REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least max(1, M) if SIDE ='L' and at least
max(1,N) if SIDE ='R".

On entry: details of the vectors which define the elementary reflectors, as returned by FOSNEF
(DGEHRD).
LDA — INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which FOSNGF
(DORMHR) is called.

Constraints:
if SIDE ='L', LDA > max(1,M);
if SIDE ='R', LDA > max(1,N).
TAU(x) — REAL (KIND=nag_wp) array Input

Note: the dimension of the array TAU must be at least max(1,M — 1) if SIDE ='L' and at least
max(1,N — 1) if SIDE = 'R,

On entry: further details of the elementary reflectors, as returned by FOSNEF (DGEHRD).
C(LDC,*) — REAL (KIND=nag_wp) array Input/Output
Note: the second dimension of the array C must be at least max(1,N).

On entry: the m by n matrix C.
On exit: C is overwritten by QC' or Q"C or CQ or CQ" as specified by SIDE and TRANS.

FOSNGEF.2 Mark 24

F08 — Least-squares and Eigenvalue Problems (LAPACK) FOSNGF

11: LDC — INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which FOSNGF
(DORMHR) is called.

Constraint: LDC > max(1,M).

122 WORK(max(1,LWORK)) — REAL (KIND=nag_wp) array Workspace
On exit: if INFO =0, WORK(1) contains the minimum value of LWORK required for optimal
performance.

13: LWORK - INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which FOSNGF
(DORMHR) is called.

If LWORK = —1, a workspace query is assumed; the routine only calculates the optimal size of the
WORK array, returns this value as the first entry of the WORK array, and no error message related
to LWORK is issued.

Suggested value: for optimal performance, LWORK > N x nb if SIDE ='L' and at least M x nb if
SIDE = 'R', where nb is the optimal block size.

Constraints:

if SIDE ='L', LWORK > max(1,N) or LWORK = —1;
if SIDE = 'R, LWORK > max(1,M) or LWORK = —1.

14: INFO — INTEGER Output

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the routine:

INFO < 0

If INFO = —i, argument ¢ had an illegal value. An explanatory message is output, and execution of
the program is terminated.

7 Accuracy

The computed result differs from the exact result by a matrix F such that
1Ell, = O Cll,

where ¢ is the machine precision.

8 Further Comments

The total number of floating point operations is approximately 2ng* if SIDE = 'L' and 2mg* if SIDE = 'R/,
where g = &,; — %0-

The complex analogue of this routine is FOSNUF (ZUNMHR).

Mark 24 FOSNGE3

FOSNGF NAG Library Manual

9 Example
This example computes all the eigenvalues of the matrix A, where

0.35 045 -0.14 -0.17

0.09 0.07 —-0.54 035
—-0.44 -033 —-0.03 0.17 |’

025 -032 -0.13 0.11

A:

and those eigenvectors which correspond to eigenvalues A such that Re(A) < 0. Here A is general and
must first be reduced to upper Hessenberg form H by FOSNEF (DGEHRD). The program then calls
FOSPEF (DHSEQR) to compute the eigenvalues, and FO8PKF (DHSEIN) to compute the required
eigenvectors of H by inverse iteration. Finally FOSNGF (DORMHR) is called to transform the
eigenvectors of H back to eigenvectors of the original matrix A.

9.1 Program Text
Program f£08ngfe

! FOBNGF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

! .. Use Statements

Use nag_library, Only: dgehrd, dhsein, dhseqr, dormhr, nag_wp, x04caf
! .. Implicit None Statement

Implicit None
! .. Parameters

Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars
Complex (Kind=nag_wp) :: eig, eigl
Real (Kind=nag_wp) :: thresh
Integer :: i, ifail, info, j, k, lda, ldc, 1dh, &

ldvl, 1ldz, 1lwork, m, n
! .. Local Arrays

Real (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), h(:,:), tau(:), &
v1l(:,:), wi(:), work(:), wr(:), z(:,:)
Integer, Allocatable :: ifaill(:), ifailr(:)
Logical, Allocatable :: select(:)
! .. Intrinsic Procedures
Intrinsic :: aimag, cmplx, real

! .. Executable Statements

Write (nout,*) ’'FO8NGF Example Program Results’
! Skip heading in data file

Read (nin,*)

Read (nin,*) n

ldz = 1
lda = n
ldc = n
1ldh = n
ldvl = n

lwork = ©64*n
Allocate (a(lda,n),c(ldc,n),h(1dh,n),tau(n),vli(ldvl,n),wi(n), &
work (1lwork) ,wr(n),z(1ldz,1),ifaill(n),ifailr(n),select(n))
! Read A from data file
Read (nin,*)(a(i,l:n),i=1,n)
Read (nin,*) thresh
! Reduce A to upper Hessenberg form H = (Q**T)*AxQ
! The NAG name equivalent of dgehrd is f08nef
Call dgehrd(n,1l,n,a,lda,tau,work,lwork,info)

! Copy A to H
h(l:n,1:n) = a(l:n,1:n)

FOSNGF.4 Mark 24

F08 — Least-squares and Eigenvalue Problems (LAPACK)

! Calculate the eigenvalues of H (same as A)
! The NAG name equivalent of dhseqr is f08pef

FOSNGF

Call dhseqr(’Eigenvalues’,’No vectors’,n,1l,n,h,1ldh,wr,wi,z,1ldz,work, &

lwork,info)

Write (nout,*)
If (info>0) Then
Write (nout,*) ’'Failure to converge.’
Else
Write (nout,*) ’'Eigenvalues’
Write (nout,99999)(’ (',wr(i),’,’,wi(i),’)’,i=1,n)

Do i =1,
select (i
End Do

n
) = wr(i) < thresh
! Calculate the eigenvectors of H (as specified by SELECT),

! storing the result in C
! The NAG name equivalent of dhsein is f08pkf

Call dhsein(’'Right’,’QR’,’'No initial vectors’,select,n,a,lda,wr,wi,vl, &

1ldvl,c,1ldc,n,m,work,ifaill,ifailr,info)

! Calculate the eigenvectors of A = Q * (eigenvectors of H)
! The NAG name equivalent of dormhr is f08ngf

Call dormhr(’'Left’,’No transpose’,n,m,1,n,a,lda,tau,c,ldc,work,lwork, &

info)
! Print eigenvectors

Write (nout,*)
Flush (nout)

! Normalize selected eigenvectors
j =0
k=1
Do While (k<=n)
If (select(k)) Then

j=3+1
If (wi(k)==0.0_nag_wp) Then
Do 1 =2, n
c(i,j) = c(i,3)/c(1,3)
End Do
c(l,j) = 1.0_nag_wp
Else
eigl = cmplx(c(1l,j),c(1l,j+1),kind=nag_wp)
c(1l,j) = 1.0_nag_wp
c(l,j+1) = 0.0_nag_wp
Do 1 =2, n
eig = cmplx(c(i,j),c(i,j+1),kind=nag_wp)
eig = eig/eigl
c(i,j) = real(eiq)
c(i,j+1) = aimag(eig)
End Do
j=3+1
k =k + 1
End If
End If
k=k+1
End Do

! ifail: behaviour on error exit

! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0

Call x04caf (’'General’,’ ’',n,m,c,1ldc,’Contents of array C’,ifail)

End If

99999 Format (1X,A,F8.4,A,F8.4,R)
End Program f08ngfe

Mark 24

FOSNGF.5

FOSNGF

9.2 Program Data

FO8BNGF Example
4
0.35 0.45
0.09 0.07
-0.44 -0.33
0.25 -0.32
0.0

Program Data

-0.14 -0.17
-0.54 0.35
-0.03 0.17
-0.13 0.11

9.3 Program Results

:Value of N

:End of matrix A
:Value of THRESH

FO8BNGF Example Program Results

Eigenvalues
(0.7995,
-0.0994,

(.
(-0.0994, -0.4008
(

-0.1007,

Contents of array C

1
1 1.0000
2 -1.7779
3 -0.9521
4 -1.2785

1.0000
.6491
.7381
.7614

U N

NAG Library Manual

FOSNGEG (last)

Mark 24

	F08NGF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	SIDE
	TRANS
	M
	N
	ILO
	IHI
	A
	LDA
	TAU
	C
	LDC
	WORK
	LWORK
	INFO

	6 Error Indicators and Warnings
	INFO<0

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

