
NAG Library Routine Document

F08KHF (DGEJSV)

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F08KHF (DGEJSV) computes the singular value decomposition (SVD) of a real m by n matrix A where
m � n, and optionally computes the left and/or right singular vectors. F08KHF (DGEJSV) implements
the preconditioned Jacobi SVD of Drmac and Veselic. This is the expert driver routine that calls F08KJF
(DGESVJ) after certain preconditioning. In most cases F08KBF (DGESVD) or F08KDF (DGESDD) is
sufficient to obtain the SVD of a real matrix. These are much simpler to use and also handle the case
m < n.

2 Specification

SUBROUTINE F08KHF (JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, M, N, A, LDA, SVA,
U, LDU, V, LDV, WORK, LWORK, IWORK, INFO)

&

INTEGER M, N, LDA, LDU, LDV, LWORK, IWORK(M+3*N), INFO

REAL (KIND=nag_wp) A(LDA,*), SVA(N), U(LDU,*), V(LDV,*), WORK(LWORK)

CHARACTER(1) JOBA, JOBU, JOBV, JOBR, JOBT, JOBP

The routine may be called by its LAPACK name dgejsv.

3 Description

The SVD is written as

A ¼ U�V T,

where � is an m by n matrix which is zero except for its n diagonal elements, U is an m by m orthogonal
matrix, and V is an n by n orthogonal matrix. The diagonal elements of � are the singular values of A in
descending order of magnitude. The columns of U and V are the left and the right singular vectors of A.
The diagonal of � is computed and stored in the array SVA.

4 References
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Drmac Z and Veselic K (2008b) New fast and accurate Jacobi SVD algorithm II SIAM J. Matrix Anal.
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5 Parameters

1: JOBA – CHARACTER(1) Input

On entry: specifies the form of pivoting for the QR factorization stage; whether an estimate of the
condition number of the scaled matrix is required; and the form of rank reduction that is performed.

JOBA ¼ C
The initial QR factorization of the input matrix is performed with column pivoting; no
estimate of condition number is computed; and, the rank is reduced by only the underflowed
part of the triangular factor R. This option works well (high relative accuracy) if A ¼ BD,
with well-conditioned B and arbitrary diagonal matrix D. The accuracy cannot be spoiled by
column scaling. The accuracy of the computed output depends on the condition of B, and
the procedure aims at the best theoretical accuracy.

JOBA ¼ E
Computation as with JOBA ¼ C with an additional estimate of the condition number of B.
It provides a realistic error bound.

JOBA ¼ F
The initial QR factorization of the input matrix is performed with full row and column
pivoting; no estimate of condition number is computed; and, the rank is reduced by only the
underflowed part of the triangular factor R. If A ¼ D1 � C �D2 with ill-conditioned
diagonal scalings D1, D2, and well-conditioned matrix C, this option gives higher accuracy
than the JOBA ¼ C option. If the structure of the input matrix is not known, and relative
accuracy is desirable, then this option is advisable.

JOBA ¼ G
Computation as with JOBA ¼ F with an additional estimate of the condition number of B,
where A ¼ DB (i.e., B ¼ C �D2). If A has heavily weighted rows, then using this
condition number gives too pessimistic an error bound.

JOBA ¼ A
Computation as with JOBA ¼ C except in the treatment of rank reduction. In this case,
small singular values are to be considered as noise and, if found, the matrix is treated as

numerically rank deficient. The computed SVD A ¼ U�V T restores A up to
f m; nð Þ � �� Ak k, where � is machine precision. This gives the procedure licence to
discard (set to zero) all singular values below N� �� Ak k.

JOBA ¼ R
Similar to JOBA ¼ A . The rank revealing property of the initial QR factorization is used to
reveal (using the upper triangular factor) a gap �rþ1 < ��r in which case the numerical rank
is declared to be r. The SVD is computed with absolute error bounds, but more accurately
than with JOBA ¼ A .

Constraint: JOBA ¼ C , E , F , G , A or R .

2: JOBU – CHARACTER(1) Input

On entry: specifies options for computing the left singular vectors U .

JOBU ¼ U
The first n left singular vectors (columns of U) are computed and returned in the array U.

JOBU ¼ F
All m left singular vectors are computed and returned in the array U.

JOBU ¼ W
No left singular vectors are computed, but the array U (with LDU � M and second
dimension at least N) is available as workspace for computing right singular values. See the
description of U.

JOBU ¼ N
No left singular vectors are computed. U is not referenced.

Constraint: JOBU ¼ U , F , W or N .

F08KHF NAG Library Manual

F08KHF.2 Mark 24



3: JOBV – CHARACTER(1) Input

On entry: specifies options for computing the right singular vectors V .

JOBV ¼ V
the n right singular vectors (columns of V ) are computed and returned in the array V; Jacobi
rotations are not explicitly accumulated.

JOBV ¼ J
the n right singular vectors (columns of V ) are computed and returned in the array V, but
they are computed as the product of Jacobi rotations. This option is allowed only if
JOBU ¼ U or F , i.e., in computing the full SVD.

JOBV ¼ W
No right singular values are computed, but the array V (with LDV � N and second
dimension at least N) is available as workspace for computing left singular values. See the
description of V.

JOBV ¼ N
No right singular vectors are computed. V is not referenced.

Constraints:

JOBV ¼ V , J , W or N ;
if JOBU ¼ W or N , JOBV 6¼ J .

4: JOBR – CHARACTER(1) Input

On entry: specifies the conditions under which columns of A are to be set to zero. This effectively
specifies a lower limit on the range of singular values; any singular values below this limit are
(through column zeroing) set to zero. If A 6¼ 0 is scaled so that the largest column (in the Euclidean
norm) of cA is equal to the square root of the overflow threshold, then JOBR allows the routine to
kill columns of A whose norm in cA is less than

ffiffiffiffiffiffiffiffiffiffiffi
sfmin
p

(for JOBR ¼ R ), or less than sfmin=�
(otherwise). sfmin is the safe range parameter, as returned by routine X02AMF.

JOBR ¼ N
Only set to zero those columns of A for which the norm of corresponding column of
cA < sfmin=�, that is, those columns that are effectively zero (to machine precision) anyway.
If the condition number of A is greater than the overflow threshold �, where � is the value
returned by X02ALF, you are recommended to use routine F08KJF (DGESVJ).

JOBR ¼ R
Set to zero those columns of A for which the norm of the corresponding column of

cA <
ffiffiffiffiffiffiffiffiffiffiffi
sfmin
p

. This approximately represents a restricted range for � cAð Þ of
ffiffiffiffiffiffiffiffiffiffiffi
sfmin
p

;
ffiffiffi
�
p� �

.

For computing the singular values in the full range from the safe minimum up to the overflow
threshold use F08KJF (DGESVJ).

Suggested value: JOBR ¼ R

Constraint: JOBR ¼ N or R .

5: JOBT – CHARACTER(1) Input

On entry: specifies, in the case n ¼ m, whether the routine is permitted to use the transpose of A

for improved efficiency. If the matrix is square then the procedure may use transposed A if AT

seems to be better with respect to convergence. If the matrix is not square, JOBT is ignored. The

decision is based on two values of entropy over the adjoint orbit of ATA. See the descriptions of
WORKð6Þ and WORKð7Þ.
JOBT ¼ T

If n ¼ m, perform an entropy test and then transpose if the test indicates possibly faster

convergence of the Jacobi process if AT is taken as input. If A is replaced with AT, then the
row pivoting is included automatically.
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JOBT ¼ N
No entropy test and no transposition is performed.

The option JOBT ¼ T can be used to compute only the singular values, or the full SVD (U , � and
V ). In the case where only one set of singular vectors (U or V ) is required, the caller must still
provide both U and V, as one of the matrices is used as workspace if the matrix A is transposed.
See the descriptions of U and V.

Constraint: JOBT ¼ T or N .

6: JOBP – CHARACTER(1) Input

On entry: specifies whether the routine should be allowed to introduce structured perturbations to
drown denormalized numbers. For details see Drmac and Veselic (2008a) and Drmac and Veselic
(2008b). For the sake of simplicity, these perturbations are included only when the full SVD or
only the singular values are requested.

JOBP ¼ P
Introduce perturbation if A is found to be very badly scaled (introducing denormalized
numbers).

JOBP ¼ N
Do not perturb.

Constraint: JOBP ¼ P or N .

7: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

8: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: M � N � 0.

9: AðLDA,�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.

On exit: the contents of A are overwritten.

10: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KHF
(DGEJSV) is called.

Constraint: LDA � max 1;Mð Þ.

11: SVAðNÞ – REAL (KIND=nag_wp) array Output

On exit: the, possibly scaled, singular values of A.

The singular values of A are �i ¼ �SVAðiÞ, for i ¼ 1; 2; . . . ; n, where � ¼WORKð1Þ=WORKð2Þ.
Normally � ¼ 1 and no scaling is required to obtain the singular values. However, if the largest
singular value of A overflows or if small singular values have been saved from underflow by scaling
the input matrix A, then � 6¼ 1.

If JOBR ¼ R then some of the singular values may be returned as exact zeros because they are
below the numerical rank threshold or are denormalized numbers.
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12: UðLDU,�Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array U must be at least max 1;Mð Þ if JOBU ¼ F , max 1;Nð Þ if
JOBU ¼ U or W , and at least 1 otherwise.

On exit: if JOBU ¼ U , U contains the m by n matrix of the left singular vectors.

If JOBU ¼ F , U contains the m by m matrix of the left singular vectors, including an orthonormal
basis of the orthogonal complement of Range(A).

If JOBU ¼ W and (JOBV ¼ V and JOBT ¼ T and M ¼ N), then U is used as workspace if the

procedure replaces A with AT. In that case, V is computed in U as left singular vectors of AT and
then copied back to the array V.

If JOBU ¼ N , U is not referenced.

13: LDU – INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which F08KHF
(DGEJSV) is called.

Constraints:

if JOBU ¼ F , U or W , LDU � max 1;Mð Þ;
otherwise LDU � 1.

14: VðLDV,�Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least max 1;Nð Þ if JOBV ¼ V , J or W , and
at least 1 otherwise.

On exit: if JOBV ¼ V or J , V contains the n by n matrix of the right singular vectors.

If JOBV ¼ W and (JOBU ¼ U and JOBT ¼ T and M ¼ N), then V is used as workspace if the

procedure replaces A with AT. In that case, U is computed in V as right singular vectors of AT and
then copied back to the array U.

If JOBV ¼ N , V is not referenced.

15: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08KHF
(DGEJSV) is called.

Constraints:

if JOBV ¼ V , J or W , LDV � max 1;Nð Þ;
otherwise LDV � 1.

16: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace

On exit: contains information about the completed job.

WORKð1Þ
� ¼ WORKð1Þ=WORKð2Þ is the scaling factor such that �i ¼ �SVAðiÞ, for i ¼ 1; 2; . . . ; n
are the computed singular values of A. (See the description of SVA.)

WORKð2Þ
See the description of WORKð1Þ.

WORKð3Þ
sconda, an estimate for the condition number of column equilibrated A (if JOBA ¼ E or

G ). sconda is an estimate of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RTR
� ��1
��� ���

1

� 	r
. It is computed using F07FGF (DPOCON).

It satisfies n�
1

4 � sconda � R�1
�� ��

2
� n

1

4 � sconda where R is the triangular factor from the
QR factorization of A. However, if R is truncated and the numerical rank is determined to
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be strictly smaller than n, sconda is returned as �1, thus indicating that the smallest singular
values might be lost.

If full SVD is needed, and you are familiar with the details of the method, the following two
condition numbers are useful for the analysis of the algorithm.

WORKð4Þ
An estimate of the scaled condition number of the triangular factor in the first QR
factorization.

WORKð5Þ
An estimate of the scaled condition number of the triangular factor in the second QR
factorization.

The following two parameters are computed if JOBT ¼ T .

WORKð6Þ
The entropy of ATA: this is the Shannon entropy of diagATA= traceATA taken as a point in
the probability simplex.

WORKð7Þ
The entropy of AAT.

17: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08KHF
(DGEJSV) is called.

If JOBU ¼ N and JOBV ¼ N

if JOBA 6¼ E or G
The minimal requirement is LWORK � max 2Mþ N; 4Nþ 1; 7ð Þ.
For optimal performance the requirement is
LWORK � max 2Mþ N; 3Nþ Nþ 1ð Þnb; 7ð Þ, where nb is the block size used by
F08AEF (DGEQRF) and F08BFF (DGEQP3). Assuming a value of nb ¼ 128 is wise,
but choosing a smaller value (e.g., nb ¼ 64) should still lead to acceptable
performance.

if JOBA ¼ E or G
In this case, LWORK is the maximum of the above and N� Nþ 4N, i.e.,
LWORK � max 2Mþ N; 3Nþ Nþ 1ð Þnb;N� Nþ 4N; 7ð Þ.

If JOBU 6¼ U or F and JOBV ¼ V or J
The minimal requirement is LWORK � max 2NþM; 7ð Þ.
For optimal performance, LWORK � max 2NþM; 2Nþ N� nb; 7ð Þ, where nb is described
above.

If JOBU ¼ U or F and JOBV 6¼ V or J
The minimal requirement is LWORK � max 2NþM; 7ð Þ.
For optimal performance, LWORK � max 2NþM; 2Nþ N� nb; 7ð Þ, where nb is described
above.

If JOBU ¼ U or F and JOBV ¼ V
LWORK � 6Nþ 2N� N.

If JOBU ¼ U or F and JOBV ¼ J
The minimal requirement is LWORK � max Mþ 3Nþ N� N; 7ð Þ.
For better performance LWORK � max 3Nþ N� NþM; 3Nþ N� Nþ N� nb; 7ð Þ, where
nb is described above.

F08KHF NAG Library Manual

F08KHF.6 Mark 24



18: IWORKðMþ 3� NÞ – INTEGER array Output

On exit: contains information about the completed job.

IWORKð1Þ
The numerical rank of A determined after the initial QR factorization with pivoting. See the
descriptions of JOBA and JOBR.

IWORKð2Þ
The number of computed nonzero singular values.

IWORKð3Þ
If nonzero, a warning message: If IWORKð3Þ ¼ 1 then some of the column norms of A were
denormalized (tiny) numbers. The requested high accuracy is not warranted by the data.

19: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the routine:

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution of
the program is terminated.

INFO > 0

F08KHF (DGEJSV) did not converge in the maximal number of sweeps. The computed values
might be inaccurate.

7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a nearby
matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2,

and � is the machine precision. In addition, the computed singular vectors are nearly orthogonal to
working precision. See Section 4.9 of Anderson et al. (1999) for further details.

8 Further Comments

F08KHF (DGEJSV) implements a preconditioned Jacobi SVD algorithm. It uses F08AEF (DGEQRF),
F08AHF (DGELQF) and F08BFF (DGEQP3) as preprocessors and preconditioners. Optionally, an
additional row pivoting can be used as a preprocessor, which in some cases results in much higher
accuracy. An example is matrix A with the structure A ¼ D1CD2, where D1, D2 are arbitrarily ill-
conditioned diagonal matrices and C is a well-conditioned matrix. In that case, complete pivoting in the
first QR factorizations provides accuracy dependent on the condition number of C, and independent of D1,
D2. Such higher accuracy is not completely understood theoretically, but it works well in practice.
Further, if A can be written as A ¼ BD, with well-conditioned B and some diagonal D, then the high
accuracy is guaranteed, both theoretically and in software, independent of D.
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9 Example

This example finds the singular values and left and right singular vectors of the 6 by 4 matrix

A ¼

2:27 �1:54 1:15 �1:94
0:28 �1:67 0:94 �0:78
�0:48 �3:09 0:99 �0:21

1:07 1:22 0:79 0:63
�2:35 2:93 �1:45 2:30

0:62 �7:39 1:03 �2:57

0
BBBBBB@

1
CCCCCCA

,

together with the condition number of A and approximate error bounds for the computed singular values
and vectors.

9.1 Program Text

Program f08khfe

! F08KHF Example Program Text

! Mark 24 Release. NAG Copyright 2012.

! .. Use Statements ..
Use nag_library, Only: ddisna, dgejsv, nag_wp, x02ajf, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, serrbd
Integer :: i, ifail, info, j, lda, ldu, ldv, &

lwork, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), rcondu(:), rcondv(:), s(:), &
u(:,:), v(:,:), work(:)

Integer, Allocatable :: iwork(:)
! .. Intrinsic Procedures ..

Intrinsic :: abs, max
! .. Executable Statements ..

Write (nout,*) ’F08KHF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldu = m
ldv = n
lwork = max(3*n+n*n+m,3*n+n*n+n*nb,7)
Allocate (a(lda,n),rcondu(m),rcondv(m),s(n),u(ldu,n),v(ldv,n), &

work(lwork),iwork(m+3*n))

! Read the m by n matrix A from data file
Read (nin,*)((a(i,j),j=1,n),i=1,m)

! Compute the singular values and left and right singular vectors
! of A (A = U*S*V^T, m.ge.n)
! The NAG name equivalent of dgejsv is f08khf

Call dgejsv(’E’,’U’,’V’,’R’,’N’,’N’,m,n,a,lda,s,u,ldu,v,ldv,work,lwork, &
iwork,info)

If (info==0) Then

! Compute the approximate error bound for the computed singular values
! using the 2-norm, s(1) = norm(A), and machine precision, eps.

eps = x02ajf()
serrbd = eps*s(1)
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! Print solution
If (abs(work(1)-work(2))<2.0_nag_wp*eps) Then

! No scaling required
Write (nout,’(1X,A)’) ’Singular values’
Write (nout,99999)(s(j),j=1,n)

Else
Write (nout,’(/1X,A)’) ’Scaled singular values’
Write (nout,99999)(s(j),j=1,n)
Write (nout,’(/1X,A)’) ’For true singular values, multiply by a/b,’
Write (nout,99996) ’ where a = ’, work(1), ’ and b = ’, work(2)

End If

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,m,n,u,ldu,’Left singular vectors’,ifail)

Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf(’General’,’ ’,n,n,v,ldv,’Right singular vectors’,ifail)

! Call DDISNA (F08FLF) to estimate reciprocal condition numbers for
! the singular vectors.

Call ddisna(’Left’,m,n,s,rcondu,info)
Call ddisna(’Right’,m,n,s,rcondv,info)

! Print the approximate error bounds for the singular values
! and vectors.

Write (nout,*)
Write (nout,’(/1X,A)’) &

’Estimate of the condition number of column equilibrated A’
Write (nout,99998) work(3)
Write (nout,’(/1X,A)’) ’Error estimate for the singular values’
Write (nout,99998) serrbd
Write (nout,’(/1X,A)’) ’Error estimates for left singular vectors’
Write (nout,99998)(serrbd/rcondu(i),i=1,n)
Write (nout,’(/1X,A)’) ’Error estimates for right singular vectors’
Write (nout,99998)(serrbd/rcondv(i),i=1,n)

Else
Write (nout,99997) ’Failure in DGEJSV. INFO =’, info

End If

99999 Format (3X,8F8.4)
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4)
99996 Format (1X,2(A,1P,E13.5))

End Program f08khfe

9.2 Program Data

F08KHF Example Program Data

6 4 :Values of M and N

2.27 -1.54 1.15 -1.94
0.28 -1.67 0.94 -0.78

-0.48 -3.09 0.99 -0.21
1.07 1.22 0.79 0.63

-2.35 2.93 -1.45 2.30
0.62 -7.39 1.03 -2.57 :End of matrix A
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9.3 Program Results

F08KHF Example Program Results

Singular values
9.9966 3.6831 1.3569 0.5000

Left singular vectors
1 2 3 4

1 0.2774 -0.6003 -0.1277 0.1323
2 0.2020 -0.0301 0.2805 0.7034
3 0.2918 0.3348 0.6453 0.1906
4 -0.0938 -0.3699 0.6781 -0.5399
5 -0.4213 0.5266 0.0413 -0.0575
6 0.7816 0.3353 -0.1645 -0.3957

Right singular vectors
1 2 3 4

1 0.1921 -0.8030 0.0041 -0.5642
2 -0.8794 -0.3926 -0.0752 0.2587
3 0.2140 -0.2980 0.7827 0.5027
4 -0.3795 0.3351 0.6178 -0.6017

Estimate of the condition number of column equilibrated A
9.0E+00

Error estimate for the singular values
1.1E-15

Error estimates for left singular vectors
1.8E-16 4.8E-16 1.3E-15 2.2E-15

Error estimates for right singular vectors
1.8E-16 4.8E-16 1.3E-15 1.3E-15

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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