
NAG Library Routine Document

F08FDF (DSYEVR)

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F08FDF (DSYEVR) computes selected eigenvalues and, optionally, eigenvectors of a real n by n
symmetric matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.

2 Specification

SUBROUTINE F08FDF (JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M,
W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

&

INTEGER N, LDA, IL, IU, M, LDZ, ISUPPZ(*), LWORK,
IWORK(max(1,LIWORK)), LIWORK, INFO

&

REAL (KIND=nag_wp) A(LDA,*), VL, VU, ABSTOL, W(*), Z(LDZ,*),
WORK(max(1,LWORK))

&

CHARACTER(1) JOBZ, RANGE, UPLO

The routine may be called by its LAPACK name dsyevr.

3 Description

The symmetric matrix is first reduced to a tridiagonal matrix T , using orthogonal similarity
transformations. Then whenever possible, F08FDF (DSYEVR) computes the eigenspectrum using
Relatively Robust Representations. F08FDF (DSYEVR) computes eigenvalues by the dqds algorithm,

while orthogonal eigenvectors are computed from various ‘good’ LDLT representations (also known as
Relatively Robust Representations). Gram–Schmidt orthogonalization is avoided as far as possible. More
specifically, the various steps of the algorithm are as follows. For the ith unreduced block of T :

(a) compute T � �iI ¼ LiDiL
T
i , such that LiDiL

T
i is a relatively robust representation,

(b) compute the eigenvalues, �j, of LiDiL
T
i to high relative accuracy by the dqds algorithm,

(c) if there is a cluster of close eigenvalues, ‘choose’ �i close to the cluster, and go to (a),

(d) given the approximate eigenvalue �j of LiDiL
T
i , compute the corresponding eigenvector by forming a

rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the parameter ABSTOL. For more details, see
Dhillon (1997) and Parlett and Dhillon (2000).
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5 Parameters

1: JOBZ – CHARACTER(1) Input

On entry: indicates whether eigenvectors are computed.

JOBZ ¼ N
Only eigenvalues are computed.

JOBZ ¼ V
Eigenvalues and eigenvectors are computed.

Constraint: JOBZ ¼ N or V .

2: RANGE – CHARACTER(1) Input

On entry: if RANGE ¼ A , all eigenvalues will be found.

If RANGE ¼ V , all eigenvalues in the half-open interval VL;VUð � will be found.

If RANGE ¼ I , the ILth to IUth eigenvalues will be found.

For RANGE ¼ V or I and IU� IL < N� 1, F08JJF (DSTEBZ) and F08JKF (DSTEIN) are
called.

Constraint: RANGE ¼ A , V or I .

3: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangular part of A is stored.

If UPLO ¼ L , the lower triangular part of A is stored.

Constraint: UPLO ¼ U or L .

4: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

5: AðLDA,�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the n by n symmetric matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: the lower triangle (if UPLO ¼ L ) or the upper triangle (if UPLO ¼ U ) of A, including the
diagonal, is overwritten.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08FDF
(DSYEVR) is called.

Constraint: LDA � max 1;Nð Þ.
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7: VL – REAL (KIND=nag_wp) Input
8: VU – REAL (KIND=nag_wp) Input

On entry: if RANGE ¼ V , the lower and upper bounds of the interval to be searched for
eigenvalues.

If RANGE ¼ A or I , VL and VU are not referenced.

Constraint: if RANGE ¼ V , VL < VU.

9: IL – INTEGER Input
10: IU – INTEGER Input

On entry: if RANGE ¼ I , the indices (in ascending order) of the smallest and largest eigenvalues to
be returned.

If RANGE ¼ A or V , IL and IU are not referenced.

Constraints:

if RANGE ¼ I and N ¼ 0, IL ¼ 1 and IU ¼ 0;
if RANGE ¼ I and N > 0, 1 � IL � IU � N.

11: ABSTOL – REAL (KIND=nag_wp) Input

On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted
as converged when it is determined to lie in an interval a; b½ � of width less than or equal to

ABSTOLþ �max aj j; bj jð Þ,
where � is the machine precision. If ABSTOL is less than or equal to zero, then � Tk k1 will be
used in its place, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form. See
Demmel and Kahan (1990).

If high relative accuracy is important, set ABSTOL to X02AMFð Þ, although doing so does not
currently guarantee that eigenvalues are computed to high relative accuracy. See Barlow and
Demmel (1990) for a discussion of which matrices can define their eigenvalues to high relative
accuracy.

12: M – INTEGER Output

On exit: the total number of eigenvalues found. 0 � M � N.

If RANGE ¼ A , M ¼ N.

If RANGE ¼ I , M ¼ IU� ILþ 1.

13: Wð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array W must be at least max 1;Nð Þ.
On exit: the first M elements contain the selected eigenvalues in ascending order.

14: ZðLDZ,�Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array Z must be at least max 1;Mð Þ if JOBZ ¼ V , and at least 1
otherwise.

On exit: if JOBZ ¼ V , the first M columns of Z contain the orthonormal eigenvectors of the matrix
A corresponding to the selected eigenvalues, with the ith column of Z holding the eigenvector
associated with WðiÞ.
If JOBZ ¼ N , Z is not referenced.

Note: you must ensure that at least max 1;Mð Þ columns are supplied in the array Z; if
RANGE ¼ V , the exact value of M is not known in advance and an upper bound of at least N
must be used.

F08 – Least-squares and Eigenvalue Problems (LAPACK) F08FDF

Mark 24 F08FDF.3



15: LDZ – INTEGER Input

On entry: the first dimension of the array Z as declared in the (sub)program from which F08FDF
(DSYEVR) is called.

Constraints:

if JOBZ ¼ V , LDZ � max 1;Nð Þ;
otherwise LDZ � 1.

16: ISUPPZð�Þ – INTEGER array Output

Note: the dimension of the array ISUPPZ must be at least max 1; 2�Mð Þ.
On exit: the support of the eigenvectors in Z, i.e., the indices indicating the nonzero elements in Z.
The ith eigenvector is nonzero only in elements ISUPPZð2� i� 1Þ through ISUPPZð2� iÞ.
Implemented only for RANGE ¼ A or I and IU� IL ¼ N� 1.

17: WORKðmax 1;LWORKð ÞÞ – REAL (KIND=nag_wp) array Workspace

On exit: if INFO ¼ 0, WORKð1Þ contains the minimum value of LWORK required for optimal
performance.

18: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08FDF
(DSYEVR) is called.

If LWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of the
WORK array and the minimum size of the IWORK array, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Suggested value: for optimal performance, LWORK � nbþ 6ð Þ � N, where nb is the largest
optimal block size for F08FEF (DSYTRD) and F08FGF (DORMTR).

Constraint: LWORK � max 1; 26� Nð Þ.

19: IWORKðmax 1;LIWORKð ÞÞ – INTEGER array Workspace

On exit: if INFO ¼ 0, IWORKð1Þ returns the minimum LIWORK.

20: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which F08FDF
(DSYEVR) is called.

If LIWORK ¼ �1, a workspace query is assumed; the routine only calculates the optimal size of
the WORK array and the minimum size of the IWORK array, returns these values as the first entries
of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued.

Constraint: LIWORK � max 1; 10� Nð Þ.

21: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the routine:

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution of
the program is terminated.
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INFO > 0

F08FDF (DSYEVR) failed to converge.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2,

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Further Comments

The total number of floating point operations is proportional to n3.

The complex analogue of this routine is F08FRF (ZHEEVR).

9 Example

This example finds the eigenvalues with indices in the range 2; 3½ �, and the corresponding eigenvectors, of
the symmetric matrix

A ¼

1 2 3 4
2 2 3 4
3 3 3 4
4 4 4 4

0
BB@

1
CCA.

Information on required and provided workspace is also output.

9.1 Program Text

Program f08fdfe

! F08FDF Example Program Text

! Mark 24 Release. NAG Copyright 2012.

! .. Use Statements ..
Use nag_library, Only: dsyevr, nag_wp, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: i, ifail, il, info, iu, lda, ldz, &

liwork, lwork, m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), w(:), work(:), z(:,:)
Real (Kind=nag_wp) :: dummy(1)
Integer :: idum(1)
Integer, Allocatable :: isuppz(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: max, nint

! .. Executable Statements ..
Write (nout,*) ’F08FDF Example Program Results’
Write (nout,*)

! Skip heading in data file and read N and the lower and upper
! indices of the smallest and largest eigenvalues to be found

Read (nin,*)
Read (nin,*) n, il, iu
lda = n
ldz = n
m = n
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Allocate (a(lda,n),w(n),z(ldz,m),isuppz(2*m))

! Use routine workspace query to get optimal workspace.
lwork = -1
liwork = -1

! The NAG name equivalent of dsyevr is f08fdf
Call dsyevr(’Vectors’,’I’,’Upper’,n,a,lda,vl,vu,il,iu,abstol,m,w,z,ldz, &

isuppz,dummy,lwork,idum,liwork,info)

! Make sure that there is enough workspace for blocksize nb.
lwork = max((nb+6)*n,nint(dummy(1)))
liwork = max(10*n,idum(1))
Allocate (work(lwork),iwork(liwork))

! Read the upper triangular part of the matrix A from data file

Read (nin,*)(a(i,i:n),i=1,n)

! Set the absolute error tolerance for eigenvalues. With ABSTOL
! set to zero, the default value is used instead

abstol = zero

! Solve the symmetric eigenvalue problem
! The NAG name equivalent of dsyevr is f08fdf

Call dsyevr(’Vectors’,’I’,’Upper’,n,a,lda,vl,vu,il,iu,abstol,m,w,z,ldz, &
isuppz,work,lwork,iwork,liwork,info)

If (info==0) Then

! Print solution

Write (nout,*) ’Selected eigenvalues’
Write (nout,99999) w(1:m)
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,n,m,z,ldz,’Selected eigenvectors’,ifail)

Else
Write (nout,99998) ’Failure in DSYEVR. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (1X,A,I5)

End Program f08fdfe

9.2 Program Data

F08FDF Example Program Data

4 2 3 :Values of N, IL and IU

1.0 2.0 3.0 4.0
2.0 3.0 4.0

3.0 4.0
4.0 :End of matrix A

9.3 Program Results

F08FDF Example Program Results

Selected eigenvalues
-0.5146 -0.2943

Selected eigenvectors
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1 2
1 -0.5144 0.2767
2 0.4851 -0.6634
3 0.5420 0.6504
4 -0.4543 -0.2457

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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