NAG Library Routine Document

F06WBF (DTFSM)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

F06WBF (DTFSM) performs one of the matrix-matrix operations

$$B \leftarrow \alpha A^{-1}B$$
, $B \leftarrow \alpha A^{-T}B$, $B \leftarrow \alpha BA^{-T}$ or $B \leftarrow \alpha BA^{-T}$,

where A is a real triangular matrix stored in Rectangular Full Packed (RFP) format, B is an m by n real matrix, and α is a real scalar. A^{-T} denotes $\left(A^{T}\right)^{-1}$ or equivalently $\left(A^{-1}\right)^{T}$. The RFP storage format is described in Section 3.3.3 in the F07 Chapter Introduction.

No test for singularity or near-singularity of A is included in this routine. Such tests must be performed before calling this routine.

2 Specification

```
SUBROUTINE F06WBF (TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, B, LDB)

INTEGER M, N, LDB

REAL (KIND=nag_wp) ALPHA, A(*), B(LDB,*)

CHARACTER(1) TRANSR, SIDE, UPLO, TRANS, DIAG
```

The routine may be called by its LAPACK name dtfsm.

3 Description

F06WBF (DTFSM) solves (for X) a triangular linear system of one of the forms

$$AX = \alpha B,$$
 $A^{T}X = \alpha B,$ $XA = \alpha B$ or $XA^{T} = \alpha B,$

where A is a real triangular matrix stored in RFP format, B, X are m by n real matrices, and α is a real scalar.

4 References

None.

5 Parameters

1: TRANSR – CHARACTER(1)

Input

On entry: specifies whether the RFP representation of A is normal or transposed.

TRANSR = 'N'

The matrix A is stored in normal RFP format.

TRANSR = 'T'

The matrix A is stored in transposed RFP format.

Constraint: TRANSR = 'N' or 'T'.

Mark 24 F06WBF.1

F06WBF NAG Library Manual

2: SIDE – CHARACTER(1)

Input

On entry: specifies whether B is operated on from the left or the right, or similarly whether A (or its transpose) appears to the left or right of the solution matrix in the linear system to be solved.

SIDE = 'L'

B is pre-multiplied from the left. The system to be solved has the form $AX = \alpha B$ or $A^TX = \alpha B$.

SIDE = 'R'

B is post-multiplied from the right. The system to be solved has the form $XA = \alpha B$ or $XA^{\rm T} = \alpha B$.

Constraint: SIDE = 'L' or 'R'.

3: UPLO – CHARACTER(1)

Input

On entry: specifies whether A is upper or lower triangular.

UPLO = 'U'

A is upper triangular.

UPLO = 'L'

A is lower triangular.

Constraint: UPLO = 'U' or 'L'.

4: TRANS – CHARACTER(1)

Input

On entry: specifies whether the operation involves A^{-1} or A^{-T} , i.e., whether or not A is transposed in the linear system to be solved.

TRANS = 'N'

The operation involves A^{-1} , i.e., A is not transposed.

TRANS = 'T'

The operation involves A^{-T} , i.e., A is transposed.

Constraint: TRANS = 'N' or 'T'.

5: DIAG – CHARACTER(1)

Input

On entry: specifies whether A has nonunit or unit diagonal elements.

DIAG = 'N'

The diagonal elements of A are stored explicitly.

DIAG = 'U'

The diagonal elements of A are assumed to be 1, the corresponding elements of A are not referenced.

Constraint: DIAG = 'N' or 'U'.

6: M – INTEGER

Input

On entry: m, the number of rows of the matrix B.

Constraint: $M \ge 0$.

7: N - INTEGER

Input

On entry: n, the number of columns of the matrix B.

Constraint: $N \ge 0$.

8: ALPHA – REAL (KIND=nag wp)

Input

On entry: the scalar α .

F06WBF.2 Mark 24

9: $A(*) - REAL (KIND=nag_wp) array$

Input

Note: the dimension of the array A must be at least $max(1, M \times (M+1)/2)$ if SIDE = L' and at least $max(1, N \times (N+1)/2)$ if SIDE = R'.

On entry: A, the m by m triangular matrix A if SIDE = 'L' or the n by n triangular matrix A if SIDE = 'R', stored in RFP format, as described in Section 3.3.3 in the F07 Chapter Introduction.

10: $B(LDB,*) - REAL (KIND=nag_wp)$ array

Input/Output

Note: the second dimension of the array B must be at least max(1, N).

On entry: the m by n matrix B.

If ALPHA = 0, B need not be set.

On exit: the updated matrix B, or similarly the solution matrix X.

11: LDB - INTEGER

Input

On entry: the first dimension of the array B as declared in the (sub)program from which F06WBF (DTFSM) is called.

Constraint: LDB $\geq \max(1, M)$.

6 Error Indicators and Warnings

None.

7 Accuracy

Not applicable.

8 Further Comments

None.

9 Example

This example reads in the lower triangular part of a symmetric matrix A which it converts to RFP format. It also reads in α and a 6 by 4 matrix B and then performs the matrix-matrix operation $B \leftarrow \alpha A^{-1}B$.

9.1 Program Text

```
Program f06wbfe
!
      FO6WBF Example Program Text
     Mark 24 Release. NAG Copyright 2012.
      .. Use Statements ..
     Use nag_library, Only: dtfsm, dtrttf, nag_wp, x04caf
!
      .. Implicit None Statement ..
      Implicit None
!
      .. Parameters ..
      Integer, Parameter
                                        :: nin = 5, nout = 6
      .. Local Scalars ..
     Real (Kind=nag_wp)
                                        :: alpha
                                        :: i, ifail, info, lda, ldb, m, n
     Integer
                                        :: side, trans, transr, uplo
     Character (1)
!
      .. Local Arrays ..
     Real (Kind=nag_wp), Allocatable :: a(:,:), af(:), b(:,:), work(:)
!
      .. Executable Statements ..
     Write (nout,*) 'F06WBF Example Program Results'
```

Mark 24 F06WBF.3

F06WBF NAG Library Manual

```
Skip heading in data file
      Read (nin,*)
      Read (nin,*) m, n, uplo, transr, side, alpha, trans
      lda = m
      ldb = m
      Allocate (a(lda,m), af((m*(m+1))/2), work(m), b(ldb,n))
     Read upper or lower triangle of matrix A from data file
      If (uplo=='L' .Or. uplo=='l') Then
       Do i = 1, m
         Read (nin,*) a(i,1:i)
        End Do
      Else
        Do i = 1, m
         Read (nin,*) a(i,i:m)
        End Do
      End If
      Read matrix B from data file
      Read (nin,*)(b(i,1:n),i=1,m)
     Convert A to rectangular full packed storage in AF
      The NAG name equivalent of dtrttf is f01vef
      Call dtrttf(transr,uplo,m,a,lda,af,info)
      Write (nout, *)
      Flush (nout)
     Perform the matrix-matrix operation
1
      The NAG name equivalent of dtfsm is f06wbf
      Call dtfsm(transr,side,uplo,trans,'N',m,n,alpha,af,b,ldb)
     Print the result
      ifail = 0
      Call x04caf('General',' ',m,n,b,ldb,'The Solution',ifail)
    End Program f06wbfe
9.2 Program Data
F06WBF Example Program Data
  6 4 'L' 'N' 'L' 4.21 'N'
                              : M, N, UPLO, TRANSR, SIDE, ALPHA, TRANS
  1.0
 2.0 2.0
3.0 3.0 3.0
4.0 4.0 4.0 4.0
 5.0 5.0 5.0 5.0 5.0
6.0 6.0 6.0 6.0 6.0 6.0 : Matrix A
       1.37
1.80
  3.22
              2.31
                      0.29
                     -1.52
               0.38
  1.64
  1.87
       2.87
              2.02 -0.80
                     -3.87
  5.20 -2.99 -0.91
       -2.71
  1.83
              -2.81
                      -1.13
 -1.10 -0.63 -0.50
                      0.81
                               : End of matrix B
9.3 Program Results
 F06WBF Example Program Results
The Solution
                                   3
```

F06WBF.4 Mark 24

1,2209

9.7251

5.7677

13.5562

F06 – Linear Algebra Support Routing	F06 -	Linear	Algebra	Support	Routine
--------------------------------------	-------	--------	---------	---------	---------

F06WBF

2	-10.1040	-1.9787	-8.9252	-4.4205	
3	-0.8280	0.2386	2.0348	2.0769	
4	2.8488	-7.1745	-3.7925	-2.9505	
5	-3.9321	0.8652	-1.4082	3.1217	
6	- 2.3127	1.8398	2.0152	1.5198	

Mark 24 F06WBF.5 (last)