
NAG Library Routine Document

F01FFF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F01FFF computes the matrix function, f Að Þ, of a complex Hermitian n by n matrix A. f Að Þ must also be
a complex Hermitian matrix.

2 Specification

SUBROUTINE F01FFF (UPLO, N, A, LDA, F, IUSER, RUSER, IFLAG, IFAIL)

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL

REAL (KIND=nag_wp) RUSER(*)

COMPLEX (KIND=nag_wp) A(LDA,*)

CHARACTER(1) UPLO

EXTERNAL F

3 Description

f Að Þ is computed using a spectral factorization of A

A ¼ QDQH,

where D is the real diagonal matrix whose diagonal elements, di, are the eigenvalues of A, Q is a unitary

matrix whose columns are the eigenvectors of A and QH is the conjugate transpose of Q. f Að Þ is then
given by

f Að Þ ¼ Qf Dð ÞQH,

where f Dð Þ is the diagonal matrix whose ith diagonal element is f dið Þ. See for example Section 4.5 of
Higham (2008). f dið Þ is assumed to be real.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Parameters

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

F01 – Matrix Operations, Including Inversion F01FFF

Mark 24 F01FFF.1

3: AðLDA,�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if IFAIL ¼ 0, the upper or lower triangular part of the n by n matrix function, f Að Þ.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01FFF is
called.

Constraint: LDA � max 1;Nð Þ.

5: F – SUBROUTINE, supplied by the user. External Procedure

The subroutine F evaluates f zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (IFLAG, N, X, FX, IUSER, RUSER)

INTEGER IFLAG, N, IUSER(*)

REAL (KIND=nag_wp) X(N), FX(N), RUSER(*)

1: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f xð Þ; for instance
f xð Þ may not be defined, or may be complex. If IFLAG is returned as nonzero then
F01FFF will terminate the computation, with IFAIL ¼ �6.

2: N – INTEGER Input

On entry: n, the number of function values required.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the n points x1; x2; . . . ; xn at which the function f is to be evaluated.

4: FXðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n function values. FXðiÞ should return the value f xið Þ, for i ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the parameters IUSER and RUSER as supplied to F01FFF. You are free
to use the arrays IUSER and RUSER to supply information to F as an alternative to using
COMMON global variables.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program
from which F01FFF is called. Parameters denoted as Input must not be changed by this procedure.

F01FFF NAG Library Manual

F01FFF.2 Mark 24

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01FFF, but are passed directly to F and may be used to pass
information to this routine as an alternative to using COMMON global variables.

8: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless you have set IFLAG nonzero inside F, in which case IFLAG will be the
value you set and IFAIL will be set to IFAIL ¼ �6.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0 and IFAIL 6¼ �999 or �6

If IFAIL ¼ �i, the ith argument had an illegal value.

IFAIL ¼ �6

IFLAG has been set nonzero by the user.

IFAIL ¼ �999

Internal memory allocation failed.

The integer allocatable memory required is N, the real allocatable memory required is 4� N� 2
and the complex allocatable memory required is approximately Nþ nbþ 1ð Þ � N, where nb is the
block size required by F08FNF (ZHEEV).

IFAIL ¼ i and IFAIL > 0

The algorithm to compute the spectral factorization failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero (see F08FNF (ZHEEV)).

Note: this failure is unlikely to occur.

7 Accuracy

Provided that f Dð Þ can be computed accurately then the computed matrix function will be close to the
exact matrix function. See Section 10.2 of Higham (2008) for details and further discussion.

F01 – Matrix Operations, Including Inversion F01FFF

Mark 24 F01FFF.3

8 Further Comments

The cost of the algorithm is O n3
� �

plus the cost of evaluating f Dð Þ. If �̂i is the ith computed eigenvalue

of A, then the user-supplied subroutine F will be asked to evaluate the function f at f �̂i

� �
, for

i ¼ 1; 2; . . . ; n.

For further information on matrix functions, see Higham (2008).

F01EFF can be used to find the matrix function f Að Þ for a real symmetric matrix A.

9 Example

This example finds the matrix cosine, cos Að Þ, of the Hermitian matrix

A ¼

1 2þ i 3þ 2i 4þ 3i
2� i 1 2þ i 3þ 2i
3� 2i 2� i 1 2þ i
4� 3i 3� 2i 2� i 1

0
BB@

1
CCA.

9.1 Program Text

! F01FFF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

Module f01fffe_mod

! F01FFF Example Program Module:
! Parameters and User-defined Routines

! nin: the input channel number
! nout: the output channel number

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

Contains
Subroutine f(iflag,n,x,fx,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fx(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
fx(1:n) = cos(x(1:n))

Return
End Subroutine f

End Module f01fffe_mod
Program f01fffe

! F01FFF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01fff, nag_wp, x04daf
Use f01fffe_mod, Only: f, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..

F01FFF NAG Library Manual

F01FFF.4 Mark 24

Integer :: i, ierr, ifail, iflag, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’F01FFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Read (nin,*) uplo

lda = n
Allocate (a(lda,n))

! Read A from data file

If (uplo==’U’ .Or. uplo==’u’) Then
Read (nin,*)(a(i,i:n),i=1,n)

Else
Read (nin,*)(a(i,1:i),i=1,n)

End If

! Find f(A)

ifail = 0
Call f01fff(uplo,n,a,lda,f,iuser,ruser,iflag,ifail)

! Print solution

ierr = 0
Call x04daf(uplo,’N’,n,n,a,lda,’Hermitian f(A)’,ierr)

End Program f01fffe

9.2 Program Data

F01FFF Example Program Data

4 :Value of N
’U’ :Value of UPLO

(1.0, 0.0) (2.0, 1.0) (3.0, 2.0) (4.0, 3.0)
(1.0, 0.0) (2.0, 1.0) (3.0, 2.0)

(1.0, 0.0) (2.0, 1.0)
(1.0, 0.0) :End of matrix A

9.3 Program Results

F01FFF Example Program Results

Hermitian f(A)
1 2 3 4

1 0.0904 -0.3377 -0.1009 -0.1092
0.0000 -0.0273 -0.0594 -0.1586

2 0.4265 -0.3139 -0.1009
0.0000 -0.0273 -0.0594

3 0.4265 -0.3377
0.0000 -0.0273

4 0.0904
0.0000

F01 – Matrix Operations, Including Inversion F01FFF

Mark 24 F01FFF.5 (last)

	F01FFF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	UPLO
	N
	A
	LDA
	F
	IFLAG in subprogram F
	N in subprogram F
	X in subprogram F
	FX in subprogram F
	IUSER in subprogram F
	RUSER in subprogram F

	IUSER
	RUSER
	IFLAG
	IFAIL

	6 Error Indicators and Warnings
	IFAIL<0&Uxa0;and&Uxa0;IFAIL&Ux2260;-999&Uxa0;or&Uxa0;-6
	IFAIL=-6
	IFAIL=-999
	IFAIL=i&Uxa0;and&Uxa0;IFAIL>0

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

