
NAG Library Routine Document

F01FFF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F01FFF computes the matrix function, f Að Þ, of a complex Hermitian n by n matrix A. f Að Þ must also be
a complex Hermitian matrix.

2 Specification

SUBROUTINE F01FFF (UPLO, N, A, LDA, F, IUSER, RUSER, IFLAG, IFAIL)

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL

REAL (KIND=nag_wp) RUSER(*)

COMPLEX (KIND=nag_wp) A(LDA,*)

CHARACTER(1) UPLO

EXTERNAL F

3 Description

f Að Þ is computed using a spectral factorization of A

A ¼ QDQH,

where D is the real diagonal matrix whose diagonal elements, di, are the eigenvalues of A, Q is a unitary

matrix whose columns are the eigenvectors of A and QH is the conjugate transpose of Q. f Að Þ is then
given by

f Að Þ ¼ Qf Dð ÞQH,

where f Dð Þ is the diagonal matrix whose ith diagonal element is f dið Þ. See for example Section 4.5 of
Higham (2008). f dið Þ is assumed to be real.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Parameters

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.
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3: AðLDA,�Þ – COMPLEX (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n Hermitian matrix A.

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if IFAIL ¼ 0, the upper or lower triangular part of the n by n matrix function, f Að Þ.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01FFF is
called.

Constraint: LDA � max 1;Nð Þ.

5: F – SUBROUTINE, supplied by the user. External Procedure

The subroutine F evaluates f zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (IFLAG, N, X, FX, IUSER, RUSER)

INTEGER IFLAG, N, IUSER(*)

REAL (KIND=nag_wp) X(N), FX(N), RUSER(*)

1: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f xð Þ; for instance
f xð Þ may not be defined, or may be complex. If IFLAG is returned as nonzero then
F01FFF will terminate the computation, with IFAIL ¼ �6.

2: N – INTEGER Input

On entry: n, the number of function values required.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the n points x1; x2; . . . ; xn at which the function f is to be evaluated.

4: FXðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n function values. FXðiÞ should return the value f xið Þ, for i ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the parameters IUSER and RUSER as supplied to F01FFF. You are free
to use the arrays IUSER and RUSER to supply information to F as an alternative to using
COMMON global variables.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program
from which F01FFF is called. Parameters denoted as Input must not be changed by this procedure.
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6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01FFF, but are passed directly to F and may be used to pass
information to this routine as an alternative to using COMMON global variables.

8: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless you have set IFLAG nonzero inside F, in which case IFLAG will be the
value you set and IFAIL will be set to IFAIL ¼ �6.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0 and IFAIL 6¼ �999 or �6

If IFAIL ¼ �i, the ith argument had an illegal value.

IFAIL ¼ �6

IFLAG has been set nonzero by the user.

IFAIL ¼ �999

Internal memory allocation failed.

The integer allocatable memory required is N, the real allocatable memory required is 4� N� 2
and the complex allocatable memory required is approximately Nþ nbþ 1ð Þ � N, where nb is the
block size required by F08FNF (ZHEEV).

IFAIL ¼ i and IFAIL > 0

The algorithm to compute the spectral factorization failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero (see F08FNF (ZHEEV)).

Note: this failure is unlikely to occur.

7 Accuracy

Provided that f Dð Þ can be computed accurately then the computed matrix function will be close to the
exact matrix function. See Section 10.2 of Higham (2008) for details and further discussion.
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8 Further Comments

The cost of the algorithm is O n3
� �

plus the cost of evaluating f Dð Þ. If �̂i is the ith computed eigenvalue

of A, then the user-supplied subroutine F will be asked to evaluate the function f at f �̂i

� �
, for

i ¼ 1; 2; . . . ; n.

For further information on matrix functions, see Higham (2008).

F01EFF can be used to find the matrix function f Að Þ for a real symmetric matrix A.

9 Example

This example finds the matrix cosine, cos Að Þ, of the Hermitian matrix

A ¼

1 2þ i 3þ 2i 4þ 3i
2� i 1 2þ i 3þ 2i
3� 2i 2� i 1 2þ i
4� 3i 3� 2i 2� i 1

0
BB@

1
CCA.

9.1 Program Text

! F01FFF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

Module f01fffe_mod

! F01FFF Example Program Module:
! Parameters and User-defined Routines

! nin: the input channel number
! nout: the output channel number

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

Contains
Subroutine f(iflag,n,x,fx,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fx(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
fx(1:n) = cos(x(1:n))

Return
End Subroutine f

End Module f01fffe_mod
Program f01fffe

! F01FFF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01fff, nag_wp, x04daf
Use f01fffe_mod, Only: f, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
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Integer :: i, ierr, ifail, iflag, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’F01FFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Read (nin,*) uplo

lda = n
Allocate (a(lda,n))

! Read A from data file

If (uplo==’U’ .Or. uplo==’u’) Then
Read (nin,*)(a(i,i:n),i=1,n)

Else
Read (nin,*)(a(i,1:i),i=1,n)

End If

! Find f( A )

ifail = 0
Call f01fff(uplo,n,a,lda,f,iuser,ruser,iflag,ifail)

! Print solution

ierr = 0
Call x04daf(uplo,’N’,n,n,a,lda,’Hermitian f(A)’,ierr)

End Program f01fffe

9.2 Program Data

F01FFF Example Program Data

4 :Value of N
’U’ :Value of UPLO

(1.0, 0.0) (2.0, 1.0) (3.0, 2.0) (4.0, 3.0)
(1.0, 0.0) (2.0, 1.0) (3.0, 2.0)

(1.0, 0.0) (2.0, 1.0)
(1.0, 0.0) :End of matrix A

9.3 Program Results

F01FFF Example Program Results

Hermitian f(A)
1 2 3 4

1 0.0904 -0.3377 -0.1009 -0.1092
0.0000 -0.0273 -0.0594 -0.1586

2 0.4265 -0.3139 -0.1009
0.0000 -0.0273 -0.0594

3 0.4265 -0.3377
0.0000 -0.0273

4 0.0904
0.0000

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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