EO05 — Global Optimization of a Function E0SJBF

NAG Library Routine Document
EO0SJBF

Note: before using this routine, please read the Users” Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

Note: this routine uses optional parameters fo define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 9 of this document. If, however, you wish to reset some or all of the settings please
refer to Section 10 for a detailed description of the algorithm, and to Section 11 for a detailed description
of the specification of the optional parameters.

1 Purpose

EOS5JBF is designed to find the global minimum or maximum of an arbitrary function, subject to simple
bound-constraints using a multi-level coordinate search method. Derivatives are not required, but
convergence is only guaranteed if the objective function is continuous in a neighbourhood of a global
optimum. It is not intended for large problems.

The initialization routine EOSJAF must have been called before calling EO5JBF.

2 Specification

SUBROUTINE EO5JBF (N, OBJFUN, IBOUND, IINIT, BL, BU, SDLIST, LIST, NUMPTS, &
INITPT, MONIT, X, OBJ, COMM, LCOMM, IUSER, RUSER, IFAIL)

INTEGER N, IBOUND, IINIT, SDLIST, NUMPTS(N), INITPT(N), LCOMM, &
IUSER(*), IFAIL

REAL (KIND=nag_wp) BL(N), BU(N), LIST(N,SDLIST), X(N), OBJ, COMM(LCOMM), &
RUSER(*)

EXTERNAL OBJFUN, MONIT

EOSJAF must be called before calling EOSJBF, or any of the option-setting or option-getting routines
EO0SJCF, EO05JDF, EOSJEF, EOSJFF, EOSJGF, EOSJHF, E05JJF, EOSJKF or EO5SJLF.

You must not alter the number of non-fixed variables in your problem or the contents of the array COMM
between calls of the routines EOSJAF, EOSJBF, EOSJCF, E05JDF, EOSJEF, EOSJFF, EO5JGF, EOSJHF,
EO05JJF, EOSJKF or EOSJLEF.

3 Description

EO5JBF is designed to solve modestly sized global optimization problems having simple bound-constraints
only; it finds the global optimum of a nonlinear function subject to a set of bound constraints on the
variables. Without loss of generality, the problem is assumed to be stated in the following form:

minimize F'(x) subject to t<x<u and (<,
XeR"
where F'(x) (the objective function) is a nonlinear scalar function (assumed to be continuous in a

neighbourhood of a global minimum), and the bound vectors are elements of R", where R denotes the
extended reals R U {—o0,00}. Relational operators between vectors are interpreted elementwise.

The optional parameter Maximize should be set if you wish to solve maximization, rather than
minimization, problems.

If certain bounds are not present, the associated elements of € or u can be set to special values that will be
treated as —oo or +o00. See the description of the optional parameter Infinite Bound Size. Phrases in this
document containing terms like ‘unbounded values’ should be understood to be taken relative to this
optional parameter.

Fixing variables (that is, setting [; = u; for some %) is allowed in EO5SJBF.

Mark 24 EO05JBF. 1

E0SJBF NAG Library Manual

A typical excerpt from a routine calling EOSJBF is:

CALL EO5JAF (N_R, COMM, LCOMM, ...)
CALL EO5JDF (OPTSTR, COMM, LCOMM, ...)
CALL EO5JBF (N, OBJFUN, ...)

where EOSJDF sets the optional parameter and value specified in OPTSTR.

The initialization routine EOSJAF does not need to be called before each invocation of EOSJBF. You
should be aware that a call to the initialization routine will reset each optional parameter to its default
value, and, if you are using repeatable randomized initialization lists (see the description of the parameter
IINIT), the random state stored in the array COMM will be destroyed.

You must supply a subroutine that evaluates F'(x); derivatives are not required.

The method used by EO5JBF is based on MCS, the Multi-level Coordinate Search method described in
Huyer and Neumaier (1999), and the algorithm it uses is described in detail in Section 10.

4 References

Huyer W and Neumaier A (1999) Global optimization by multi-level coordinate search Journal of Global
Optimization 14 331-355

5 Parameters
1: N — INTEGER Input
On entry: n, the number of variables.

Constraint: N > 0.

2: OBJFUN — SUBROUTINE, supplied by the user. External Procedure
OBJFUN must evaluate the objective function F'(x) for a specified n-vector x.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (N, X, F, NSTATE, IUSER, RUSER, INFORM)

INTEGER N, NSTATE, IUSER(*), INFORM

REAL (KIND=nag_wp) X(N), F, RUSER(%*)

1: N — INTEGER Input

On entry: n, the number of variables.

2: X(N) — REAL (KIND=nag_wp) array Input

On entry: X, the vector at which the objective function is to be evaluated.

3: F — REAL (KIND=nag wp) Output
On exit: must be set to the value of the objective function at x, unless you have specified
termination of the current problem using INFORM.

4: NSTATE — INTEGER Input

On entry: if NSTATE = 1 then EO5JBF is calling OBJFUN for the first time. This
parameter setting allows you to save computation time if certain data must be read or
calculated only once.

EO05JBF.2 Mark 24

EO05 — Global Optimization of a Function E0SJBF

5: IUSER (%) — INTEGER array User Workspace
6: RUSER(*) — REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the parameters [IUSER and RUSER as supplied to EOSJBF. You
are free to use the arrays IUSER and RUSER to supply information to OBJFUN as an
alternative to using COMMON global variables.

7: INFORM — INTEGER Output

On exit: must be set to a value describing the action to be taken by the solver on return
from OBJFUN. Specifically, if the value is negative the solution of the current problem
will terminate immediately; otherwise, computations will continue.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which EOSJBF is called. Parameters denoted as /nput must not be changed by
this procedure.

3: IBOUND — INTEGER Input

On entry: indicates whether the facility for dealing with bounds of special forms is to be used.
IBOUND must be set to one of the following values.

IBOUND =0

You will supply € and u individually.
IBOUND =1

There are no bounds on x.
IBOUND =2

There are semi-infinite bounds 0 < x.
IBOUND =3

There are constant bounds € = ¢; and u = u;.
Note that it only makes sense to fix any components of x when IBOUND = 0.
Constraint. IBOUND =0, 1, 2 or 3.

4: IINIT — INTEGER Input
On entry: selects which initialization method to use.
IINIT =0
Simple initialization (boundary and midpoint), with
NUMPTS(i) = 3, INITPT(3) = 2 and
LIST(i, j) = (BL(2), (BL(2) + BU(4))/2, BU(3)),
fori=1,2,...,Nand j=1,2,3.
IINIT =1
Simple initialization (off-boundary and midpoint), with
NUMPTS(i) = 3, INITPT(i) = 2 and
LIST(i, j) = ((5BL() + BU(7))/6, (BL(z) + BU(:))/2, (BL(i) 4+ 5BU(4))/6),
fori=1,2,...,Nand j=1,2,3.
IINIT =2
Initialization using linesearches.

[INIT = 3
You are providing your own initialization list.

IINIT = 4
Generate a random initialization list.

For more information on methods IINIT = 2, 3 or 4 see Section 10.1.

Mark 24 EO05JBF.3

E0SJBF NAG Library Manual

If “infinite’ values (as determined by the value of the optional parameter Infinite Bound Size) are
detected by EOSJBF when you are using a simple initialization method (IINIT =0 or 1), a
safeguarded initialization procedure will be attempted, to avoid overflow.

Suggested value: 1INIT = 0
Constraint: IINIT =0, 1, 2, 3 or 4.

5: BL(N) — REAL (KIND=nag_wp) array Input/Output
6: BU(N) — REAL (KIND=nag_wp) array Input/Output

On entry: BL is ¢, the array of lower bounds. BU is u, the array of upper bounds.

If IBOUND = 0, you must set BL(%) to ¢; and BU(¢) to u;, for i = 1,2,... ,N. If a particular z; is
to be unbounded below, the corresponding BL(¢) should be set to —infbnd, where infbnd is the
value of the optional parameter Infinite Bound Size. Similarly, if a particular z; is to be unbounded
above, the corresponding BU(4) should be set to infbnd.

If IBOUND =1 or 2, arrays BL and BU need not be set on input.

If IBOUND = 3, you must set BL(1) to ¢; and BU(1) to u;. The remaining elements of BL and
BU will then be populated by these initial values.

On exit: unless IFAIL = 1 or 2 on exit, BL and BU are the actual arrays of bounds used by E05JBF.
Constraints:

if IBOUND = 0, BL(i) < BU(i), for i = 1,2,...,N;
if IBOUND = 3, BL(1) < BU(1).

7: SDLIST — INTEGER Input

On entry: the second dimension of the array LIST as declared in the (sub)program from which
EO5JBF is called. SDLIST is, at least, the maximum over ¢ of the number of points in coordinate ¢
at which to split according to the initialization list LIST; that is, SDLIST > maxNUMPTS(:).

2

Internally, EO5JBF uses LIST to determine sets of points along each coordinate direction to which it
fits quadratic interpolants. Since fitting a quadratic requires at least three distinct points, this puts a
lower bound on SDLIST. Furthermore, in the case of initialization by linesearches (IINIT = 2)
internal storage considerations require that SDLIST be at least 192, but not all of this space may be
used.

Constraints:

if TINIT # 2, SDLIST > 3;
if IINIT = 2, SDLIST > 192;
if TINIT = 3, SDLIST > max{NUMPTS(i)}.

8: LIST(N,SDLIST) — REAL (KIND=nag_wp) array Input/Output

On entry: this parameter need not be set on entry if you wish to use one of the preset initialization
methods (IINIT # 3).

LIST is the ‘initialization list’: whenever a sub-box in the algorithm is split for the first time (either
during the initialization procedure or later), for each non-fixed coordinate ¢ the split is done at the
values LIST(i,1 : NUMPTS(¢)), as well as at some adaptively chosen intermediate points. The
array sections LIST(¢, 1 : NUMPTS(4)), for ¢ = 1,2,...,N, must be in ascending order with each
entry being distinct. In this context, ‘distinct’ should be taken to mean relative to the safe-range
parameter (see X02AMF).

EO05JBF.4 Mark 24

EO05 — Global Optimization of a Function E0SJBF

10:

11:

On exit: unless IFAIL = 1, 2 or —999 on exit, the actual initialization data used by EOSJBF. If you
wish to monitor the contents of LIST you are advised to do so solely through MONIT, not through
the output value here.

Constraint: if X(i) is not fixed, LIST(i, 1 : NUMPTS(4)) is in ascending order with each entry
being distinct, for ¢=1,2,...,NBL(i) <LIST(4,j) <BU(i), for i=1,2,....N and
j=1,2,...,NUMPTS(s).

NUMPTS(N) — INTEGER array Input/Output

On entry: this parameter need not be set on entry if you wish to use one of the preset initialization
methods (IINIT # 3).

NUMPTS encodes the number of splitting points in each non-fixed dimension.
On exit: unless IFAIL = 1, 2 or —999 on exit, the actual initialization data used by EO5JBF.
Constraints:
if X(3) is not fixed, NUMPTS(:) < SDLIST;
NUMPTS(i) > 3, for i =1,2,...,N.
INITPT(N) — INTEGER array Input/Output

On entry: this parameter need not be set on entry if you wish to use one of the preset initialization
methods (IINIT # 3).

You must designate a point stored in LIST that you wish EOSJBF to consider as an ‘initial point’ for
the purposes of the splitting procedure. Call this initial point x*. The coordinates of x* correspond
to a set of indices J;, for i = 1,2,...,n, such that x; is stored in LIST(s,J;), for i = 1,2,...,n.
You must set INITPT(:) = J;, for i =1,2,...,n.

On exit: unless IFAIL =1, 2 or —999 on exit, the actual initialization data used by E05JBF.
Constraint: if X(4) is not fixed, 1 < INITPT(¢) < SDLIST, for ¢ =1,2,...,N.

MONIT — SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT may be used to monitor the optimization process. It is invoked upon every successful
completion of the procedure in which a sub-box is considered for splitting. It will also be called
just before EOSIBF exits if that splitting procedure was not successful.

If no monitoring is required, MONIT may be the dummy monitoring routine E0O5JBK supplied by
the NAG Library.

The specification of MONIT is:

SUBROUTINE MONIT (N, NCALL, XBEST, ICOUNT, NINIT, LIST, NUMPTS, &
INITPT, NBASKT, XBASKT, BOXL, BOXU, NSTATE, IUSER, &
RUSER, INFORM)
INTEGER N, NCALL, ICOUNT(6), NINIT, NUMPTS(N), &
INITPT(N), NBASKT, NSTATE, IUSER(*), INFORM
REAL (KIND=nag_wp) XBEST(N), LIST(N,NINIT), XBASKT(N,NBASKT), &

BOXL(N), BOXU(N), RUSER(*)

I: N — INTEGER Input

On entry: n, the number of variables.

2: NCALL — INTEGER Input
On entry: the cumulative number of calls to OBJFUN.

3: XBEST(N) — REAL (KIND=nag_wp) array Input

On entry: the current best point.

Mark 24 EO05JBF.5

EO0SJBF

EO05JBF.6

10:

11:

12:

13:

NAG Library Manual

ICOUNT(6) — INTEGER array Input
On entry: an array of counters.
ICOUNT(1)

nboxes, the current number of sub-boxes.
ICOUNT(2)

ncloc, the cumulative number of calls to OBJFUN made in local searches.
ICOUNT(3)

nloc, the cumulative number of points used as start points for local searches.
ICOUNT(4)

nsweep, the cumulative number of sweeps through levels.
ICOUNT(5)

m, the cumulative number of splits by initialization list.
ICOUNT(6)

s, the current lowest level containing non-split boxes.

NINIT — INTEGER Input

On entry: the maximum over ¢ of the number of points in coordinate ¢ at which to split
according to the initialization list LIST. See also the description of the parameter
NUMPTS.

LIST(N,NINIT) — REAL (KIND=nag_wp) array Input

On entry: the initialization list.

NUMPTS(N) — INTEGER array Input

On entry: the number of points in each coordinate at which to split according to the
initialization list LIST.

INITPT(N) — INTEGER array Input

On entry: a pointer to the ‘initial point” in LIST. Element INITPT(3) is the column index
in LIST of the ith coordinate of the initial point.

NBASKT — INTEGER Input
On entry: the number of points in the ‘shopping basket” XBASKT.

XBASKT(N,NBASKT) — REAL (KIND=nag_wp) array Input

Note: The jth candidate minimum has its ith coordinate stored in XBASKT(j,¢), for
i=1,2,...,Nand j=1,2,... ,NBASKT.

On entry: the ‘shopping basket’ of candidate minima.

BOXL(N) — REAL (KIND=nag_wp) array Input
On entry: the array of lower bounds of the current search box.

BOXU(N) — REAL (KIND=nag_wp) array Input

On entry: the array of upper bounds of the current search box.

NSTATE — INTEGER Input

On entry: is set by EOSJBF to indicate at what stage of the minimization MONIT was
called.

Mark 24

EO05 — Global Optimization of a Function E0SJBF

12:

14:

16:
17:

18:

NSTATE =1
This is the first time that MONIT has been called.

NSTATE = —1
This is the last time MONIT will be called.

NSTATE =0
This is the first and last time MONIT will be called.

14: TUSER(x) — INTEGER array User Workspace
15: RUSER(*) — REAL (KIND=nag_wp) array User Workspace

MONIT is called with the parameters [IUSER and RUSER as supplied to EOSJBF. You are
free to use the arrays IUSER and RUSER to supply information to MONIT as an
alternative to using COMMON global variables.

16: INFORM — INTEGER Output

On exit: must be set to a value describing the action to be taken by the solver on return
from MONIT. Specifically, if the value is negative the solution of the current problem will
terminate immediately; otherwise, computations will continue.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which EOSJBF is called. Parameters denoted as /nput must not be changed by
this procedure.

X(N) — REAL (KIND=nag_wp) array Output

On exit: if IFAIL = 0, contains an estimate of the global optimum (see also Section 7).

OBJ — REAL (KIND=nag_wp) Output
On exit: if IFAIL = 0, contains the function value at X.

If you request early termination of EOSJBF using INFORM in OBJFUN or the analogous INFORM
in MONIT, there is no guarantee that the function value at X equals OBIJ.

COMM(LCOMM) — REAL (KIND=nag_wp) array Communication Array
On exit: COMM must not be altered between calls to any of the routines EOSJBF, EOSJCF, EO5JDF,
EOSJEF, EO5SJFF, EOSJGF, EOSJHF, EO5JJF, EOSJKF and EOSJLF.

LCOMM - INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which EO5JBF is
called.

Constraint: LCOMM > 100.
IUSER(*) — INTEGER array User Workspace
RUSER(%) — REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by EOSJBF, but are passed directly to OBJFUN and MONIT and
may be used to pass information to these routines as an alternative to using COMMON global
variables.

IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the

Mark 24 EO05JBE.7

E0SJBF NAG Library Manual

recommended value is 0. When the value —1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

EO05JBF returns with IFAIL = 0 if your termination criterion has been met: either a target value has
been found to the required relative error (as determined by the values of the optional parameters
Target Objective Value, Target Objective Error and Target Objective Safeguard), or the best
function value was static for the number of sweeps through levels given by the optional parameter
Static Limit. The latter criterion is the default.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL =1
Either the initialization routine EOSJAF has not been called or LCOMM is less than 100.

IFAIL =2
An input parameter is invalid. If IFAIL =0 or —1 on entry, the output message provides more
details of the invalid argument.

IFAIL =3
The initialization list contained infinities.

Either the user-supplied initialization list contained infinite values, as determined by the optional
parameter Infinite Bound Size, or a finite initialization list could not be computed internally. In the
latter case you should consider reformulating the bounds on the problem, try providing your own
initialization list, use the randomization option (IINIT = 4) or vary the value of Infinite Bound
Size.

IFAIL =4
The division procedure completed but your target value could not be reached.

Despite every sub-box being processed smax times (where smax is the value of the optional

parameter Splits Limit), the target value you provided via the optional parameter Target Objective

Value could not be found to the tolerances given in the optional parameters Target Objective Error

and Target Objective Safeguard. You could try increasing Splits Limit or the objective tolerances.
IFAIL =5

The function evaluations limit was exceeded.

Approximately nf function calls (where nf is the value of the optional parameter Function

Evaluations Limit) have been made without your chosen termination criterion being satisfied.
IFAIL =6

You terminated the solver.

You indicated that you wished to halt solution of the current problem by setting INFORM in
OBJFUN or INFORM in MONIT to a negative value on exit. If IFAIL =0 or —1 on entry to
EO5JBF, the output message provides more details of where the termination was requested.

EO05JBES Mark 24

EO05 — Global Optimization of a Function E0SJBF

IFAIL =7

No further progress could be made on your problem. Try rescaling the objective function, relaxing
the bounds, or using a different initialization method.

IFAIL = —999

Internal memory allocation failed.

7 Accuracy

If IFAIL =0 on exit, then the vector returned in the array X is an estimate of the solution x whose
function value satisfies your termination criterion: the function value was static for Static Limit sweeps
through levels, or

F(x) — objval < max(objerr x |objval|, objsfg),

where objval is the value of the optional parameter Target Objective Value, objerr is the value of the
optional parameter Target Objective Error, and objsfg is the value of the optional parameter Target
Objective Safeguard.

8 Further Comments

For each invocation of EO5JBF, local workspace arrays of fixed length are allocated internally. The total
size of these arrays amounts to 13n, + smax — 1 integer elements, where smax is the value of the optional
parameter Splits Limit and n, is the number of non-fixed variables, and
(2 4+ n,)SDLIST + 2N + 21n, + 3n2 +1 real elements. In addition, if you are using randomized
initialization lists (see the description of the parameter IINIT), a further 21 integer elements are allocated
internally.

In order to keep track of the regions of the search space that have been visited while looking for a global
optimum, EO5SJBF internally allocates arrays of increasing sizes depending on the difficulty of the problem.
Two of the main factors that govern the amount allocated are the number of sub-boxes (call this quantity
nboxes) and the number of points in the ‘shopping basket’ (the parameter NBASKT on entry to MONIT).
Safe, pessimistic upper bounds on these two quantities are so large as to be impractical. In fact, the worst-
case number of sub-boxes for even the most simple initialization list (when NINIT =3 on entry to
MONIT) grows like n,”". Thus E05JBF does not attempt to estimate in advance the final values of nboxes
or NBASKT for a given problem. There are a total of 5 integer arrays and 4 + n, + NINIT real arrays
whose lengths depend on nboxes, and there are a total of 2 integer arrays and 3 + N + n, real arrays
whose lengths depend on NBASKT. EO5JBF makes a fixed initial guess that the maximum number of
sub-boxes required will be 10000 and that the maximum number of points in the ‘shopping basket’ will be
1000. If ever a greater amount of sub-boxes or more room in the ‘shopping basket’ is required, EOSJBF
performs reallocation, usually doubling the size of the inadequately-sized arrays. Clearly this process
requires periods where the original array and its extension exist in memory simultaneously, so that the data
within can be copied, which compounds the complexity of EOSJBF’s memory usage. It is possible
(although not likely) that if your problem is particularly difficult to solve, or of a large size (hundreds of
variables), you may run out of memory.

One array that could be dynamically resized by EOSJBF is the ‘shopping basket’ (XBASKT on entry to
MONIT). If the initial attempt to allocate 1000n,. reals for this array fails, MONIT will not be called on
exit from EOSJBF.

EO5JBF performs better if your problem is well-scaled. It is worth trying (by guesswork perhaps) to
rescale the problem if necessary, as sensible scaling will reduce the difficulty of the optimization problem,
so that EOSJBF will take less computer time.

Mark 24 EO05JBF.9

E0SJBF NAG Library Manual

9 Example

This example finds the global minimum of the ‘peaks’ function in two dimensions
F(z,y) =3(1 —z)? exp(—ac2 —(y+ 1)2) — 10(% -z - ys) exp(—az;2 — yz) — %exp(—(m +1)" = yz)

on the box [—3,3] x [-3,3].

The function F' has several local minima and one global minimum in the given box. The global minimum
is approximately located at (0.23, —1.63), where the function value is approximately —6.55.

We use default values for all the optional parameters, and we instruct EOSIBF to use the simple
initialization list corresponding to IINIT = 0. In particular, this will set for us the initial point (0,0) (see
Section 9.3).

9.1 Program Text

! EO5JBF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

Module e05jbfe_mod

! EO5JBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements
Use nag_library, Only: nag_wp
! .. Implicit None Statement
Implicit None
! .. Parameters

Integer, Parameter :: lcomm = 100, nin = 5, nout = 6
! .. Local Scalars
Logical :: plot
Contains

Subroutine outbox(n,boxl,boxu)

! Displays edges of box with bounds BOXL and BOXU in format suitable
! for plotting.

! .. Scalar Arguments

Integer, Intent (In) :: n
! .. Array Arguments
Real (Kind=nag_wp), Intent (In) :: boxl(n), boxu(n)

! .. Executable Statements
Write (nout,99999) boxl(1l), boxl(2)

Write (nout,99999) boxl(1l), boxu(2)
Write (nout,99998)
Write (nout,99999) boxl(1l), boxl1l(2)
Write (nout,99999) boxu(l), boxl(2)
Write (nout,99998)
Write (nout,99999) boxl(1l), boxu(2)
Write (nout,99999) boxu(l), boxu(2)
Write (nout,99998)
Write (nout,99999) boxu(l), boxl1l(2)
Write (nout,99999) boxu(l), boxu(2)
Write (nout,99998)

Return

99999 Format (F20.15,1X,F20.15)
99998 Format (A)
End Subroutine outbox
Subroutine objfun(n,x,f,nstate,iuser,ruser,inform)

! Routine to evaluate EO5JBF objective function.
! .. Scalar Arguments

Real (Kind=nag_wp), Intent (Out) HESS
Integer, Intent (Out) :: inform

EO05JBF.10 Mark 24

EO05 — Global Optimization of a Function E0SJBF

Integer, Intent (In) :: n, nstate
! .. Array Arguments
Real (Kind=nag_wp), Intent (Inout) :: ruser ()
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: luser (%)
! .. Local Scalars
Real (Kind=nag_wp) ::ox1, x2
! .. Intrinsic Procedures
Intrinsic 11 exp
! .. Executable Statements
inform = 0

If (inform>=0) Then

! If INFORM>=0 then we’'re prepared to evaluate OBJFUN
! at the current X

If (nstate==1) Then
! This is the first call to OBJFUN

Write (nout,*)
Write (nout,99999)

End If
x1 = x(1)
x2 = x(2)

f = 3.0EO_nag_wp*(1l.0EO_nag_wp-x1)**2*xexp(-(x1l*x*2)-(x2+1.0EO_nag_wp) &
x2) - 1.0E1l_nag_wp(x1/5.0E0_nag_wp-x1x*3-x2x*5)*exXxp(-x1*x*2-x2%x*x2 &
) - 1.0EO_nag_wp/3.0EO_nag _wp*exp(-(x1+1.0E0_nag_wp) **2-x2%*2)
End If

Return
99999 Format (1X,’(OBJFUN was just called for the first time)’)
End Subroutine objfun
Subroutine monit(n,ncall,xbest,icount,ninit,list,numpts,initpt,nbaskt, &
xbaskt,boxl,boxu,nstate,iuser,ruser,inform)

! Monitoring routine for EO5JBF.

! .. Scalar Arguments

Integer, Intent (Out) :: inform
Integer, Intent (In) :: n, nbaskt, ncall, ninit, nstate
! .. Array Arguments
Real (XKind=nag_wp), Intent (In) :: boxl(n), boxu(n), &
list(n,ninit), &
xbaskt (n,nbaskt), xbest(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser (*)
Integer, Intent (In) :: icount(6), initpt(n), numpts(n)
Integer, Intent (Inout) :: luser (*)
! .. Local Scalars
Integer t: 01, J
! .. Executable Statements
inform = 0

If (inform>=0) Then
! We are going to allow the iterations to continue.
If (nstate==0 .0Or. nstate==1) Then
! When NSTATE==1, MONIT is called for the first time. When
! NSTATE==0, MONIT is called for the first AND last time.
! Display a welcome message
Write (nout,*)

Write (nout,99999)
Write (nout,*)

Mark 24 EO05JBF 11

E0SJBF NAG Library Manual

If (plot .And. (n==2)) Then
Write (nout,99998)
Write (nout,*)
End If
End If
If (plot .And. (n==2)) Then

! Display the coordinates of the edges of the current search
! box

Call outbox(n,boxl,boxu)
End If
If (nstate<=0) Then
! MONIT is called for the last time
If (plot .And. (n==2)) Then

Write (nout,99997)
Write (nout,*)

End If
Write (nout,99996) icount (1)
Write (nout,99995) ncall
Write (nout,99994) icount(2)
Write (nout,99993) icount(3)
Write (nout,99992) icount(4)
Write (nout,99991) icount(5)
Write (nout,99990) icount(6)
Write (nout,99989) nbaskt
Write (nout,99988)
Do i =1, n

Write (nout,99987) i, (xbaskt(i,j),j=1,nbaskt)
End Do

Write (nout,*)
Write (nout,99986)
Write (nout,*)

End If

End If
Return
99999 Format

99998 Format
99997 Format

(1X,"*x*x* Begin monitoring information **=*’)
(1X,'<Begin displaying search boxes>')
(1X,'<End displaying search boxes>"’)
99996 Format (1X,’Total sub-boxes =',I5)
99995 Format (1X,’'Total function evaluations =’,I5)
99994 Format (1X,’Total function evaluations used in local search =',I5)
99993 Format (1X,’'Total points used in local search =',I5)
99992 Format (1X,’'Total sweeps through levels =’,I5)
99991 Format (1X,’'Total splits by init. list =',I5)
99990 Format (1X,’Lowest level with nonsplit boxes =’,I5)
99989 Format (1X,’'Number of candidate minima in the "shopping basket’,’" =', &
I5)
99988 Format (1X,’Shopping basket:’)
99987 Format (1X,’XBASKT(',I3,’,:) =',(6F9.5))
99986 Format (1X,’*** End monitoring information x*xx*’')
End Subroutine monit
End Module eO5jbfe_mod
Program e057jbfe

! EO5JBF Example Main Program
! .. Use Statements

Use nag_library, Only: eO5jaf, e05jbf, nag_wp

EO05JBF.12 Mark 24

EO05 — Global Optimization of a Function E0SJBF

Use e05jbfe_mod, Only: lcomm, monit, nin, nout, objfun, plot
! .. Implicit None Statement

Implicit None
! .. Local Scalars

Real (Kind=nag_wp) :: obj

Integer :: i, ibound, ifail, iinit, n, sdlist
! .. Local Arrays

Real (Kind=nag_wp), Allocatable :: bl(:), bu(:), comm(:), &

list(:,:), x(:)

Real (Kind=nag_wp) :: ruser (1)

Integer, Allocatable :: initpt(:), numpts(:)

Integer :: iuser (1)

! .. Executable Statements
Write (nout,*) 'EO5JBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, sdlist

Allocate (bl(n),bu(n),list(n,sdlist),numpts(n),initpt(n),x(n), &
comm(lcomm))

Read (nin,*) ibound
If (ibound==0) Then
! Read in the whole of each bound
Read (nin,*) (bl(i),i=1,n)
Read (nin,*) (bu(i),i=1,n)
Else If (ibound==3) Then
! Bounds are uniform: read in only the first entry of each
Read (nin,*) bl(1)
Read (nin,*) bu(1l)
End If

Read (nin,*) iinit

! PLOT determines whether MONIT displays information on the
! current search box:

Read (nin,*) plot

! The first argument to EO5JAF is a legacy argument and has no
! significance.

ifail = 0
Call e0O5jaf(0,comm,lcomm,ifail)

! Solve the problem.

ifail = 0
Call e05jbf(n,objfun,ibound,iinit,bl,bu,sdlist,list,numpts,initpt,monit, &
x,0bj,comm,lcomm,iuser,ruser,ifail)

Write (nout,*)
Write (nout,99999) obj
Write (nout,99998) (x(i),i=1,n)

99999 Format (1X,’Final objective value =',F11.5)

99998 Format (1X,’Global optimum X =',2F9.5)
End Program eO5jbfe

Mark 24 EO05JBF.13

E05JBF NAG Library Manual

9.2 Program Data

EO5JBF Example Program Data

2 3 : N, SDLIST

0 : IBOUND

-3.0 -3.0 : Lower bounds BL
3.0 3.0 : Upper bounds BU
0 : IINIT

.FALSE. : PLOT

9.3 Program Results

EO5JBF Example Program Results
(OBJFUN was just called for the first time)

*x*x Begin monitoring information **%*

Total sub-boxes = 228

Total function evaluations = 196

Total function evaluations used in local search = 87
Total points used in local search = 13

Total sweeps through levels = 12

Total splits by init. list = 5

Lowest level with nonsplit boxes = 7

Number of candidate minima in the "shopping basket" = 2
Shopping basket:

XBASKT(1,:) = -1.34740 0.22828

XBASKT(2,:) = 0.20452 -1.62553

*x*x End monitoring information #*x=*

Final objective value = -6.55113
Global optimum X = 0.22828 -1.62553

Example Program
The Peaks Function F and Search Boxes
The global minimum is denoted by *, while our start point is labelled with X

3 H— T T T T

E05JBF. 14 Mark 24

EO05 — Global Optimization of a Function E0SJBF

Note: the remainder of this document is intended for more advanced users. Section 10 contains a detailed
description of the algorithm. This information may be needed in order to understand Section 11, which
describes the optional parameters that can be set by calls to EQ5JCF, E05JDF, EO5JEF, E05JFF and/or
EO05JGF.

10 Algorithmic Details

Here we summarise the main features of the MCS algorithm used in EO5JBF, and we introduce some
terminology used in the description of the subroutine and its arguments. We assume throughout that we
will only do any work in coordinates ¢ in which x; is free to vary. The MCS algorithm is fully described
in Huyer and Neumaier (1999).

10.1 Inmitialization and Sweeps

Each sub-box is determined by a basepoint x and an opposite point y. We denote such a sub-box by
Blx,y]. The basepoint is allowed to belong to more than one sub-box, is usually a boundary point, and is
often a vertex.

An initialization procedure produces an initial set of sub-boxes. Whenever a sub-box is split along a

coordinate ¢ for the first time (in the initialization procedure or later), the splitting is done at three or more

user-defined values {xf } at which the objective function is sampled, and at some adaptively chosen
J

intermediate points. At least four children are generated. More precisely, we assume that we are given

£i§m2<m$<-~~<xf’§ui, L; >3, fori=1,2,....n

and a vector p that, for each ¢, locates within {x{ } the ith coordinate of an initial point x°; that is, if
_ J

:r? =z for some j=1,2,...,L;, then p; = j. A good guess for the global optimum can be used as x’.

The initialization points and the vectors € and p are collectively called the initialization list (and sometimes

we will refer to just the initialization points as ‘the initialization list’, whenever this causes no confusion).

The initialization data may be input by you, or they can be set to sensible default values by EOSJBF: if you

provide them yourself, LIST(i,) should contain z/, NUMPTS(:) should contain L;, and INITPT(%)
should contain p;, for ¢ =1,2,...,n and j=1,2,...,L;; if you wish EO5JBF to use one of its preset
initialization methods, you could choose one of two simple, three-point methods (see Figure 1). If the list
generated by one of these methods contains infinite values, attempts are made to generate a safeguarded
list using the function subint(x,y) (which is also used during the splitting procedure, and is described in
Section 10.2). If infinite values persist, EOSJBF exits with IFAIL = 3. There is also the option to generate
an initialization list with the aid of linesearches (by setting IINIT = 2). Starting with the absolutely
smallest point in the root box, linesearches are made along each coordinate. For each coordinate, the local
minimizers found by the linesearches are put into the initialization list. If there were fewer than three
minimizers, they are augmented by close-by values. The final preset initialization option (IINIT = 4)
generates a randomized list, so that independent multiple runs may be made if you suspect a global
optimum has not been found. Each call to the initialization routine EOSJAF resets the initial-state vector
for the Wichmann—Hill base-generator that is used. Depending on whether you set the optional parameter
Repeatability to ‘ON’ or ‘OFF’, the random state is initialized to give a repeatable or non-repeatable
sequence. Then, a random integer between 3 and SDLIST is selected, which is then used to determine the
number of points to be generated in each coordinate; that is, NUMPTS becomes a constant vector, set to
this value. The components of LIST are then generated, from a uniform distribution on the root box if the
box is finite, or else in a safeguarded fashion if any bound is infinite. The array INITPT is set to point to
the best point in LIST.

Given an initialization list (preset or otherwise), EOSIBF evaluates F at x°, and sets the initial estimate of
the global minimum, x*, to x’. Then, for i = 1,2,...,n, the objective function F' is evaluated at L; — 1

points that agree with x* in all but the 7th coordinate. We obtain pairs (f(j , fij), forj=1,2,...,L,;, with:
xF =%, say; with, for j # j;,

Mark 24 EO05JBF 15

E0SJBF NAG Library Manual

¥ {x,’; if k4 i

x; otherwise;
and with

fl = F).
The point having the smallest function value is renamed x* and the procedure is repeated with the next
coordinate.

Once EO5JBF has a full set of initialization points and function values, it can generate an initial set of sub-
boxes. Recall that the root box is B[x,y] = [¢,u], having basepoint x = x’. The opposite point y is a
corner of [¢,u] farthest away from x, in some sense. The point x need not be a vertex of [¢,u], and y is
entitled to have infinite coordinates. We loop over each coordinate ¢, splitting the current box along
coordinate ¢ into 2L; — 2, 2L; — 1 or 2L, sub-intervals with exactly one of the :?:Z as endpoints, depending

on whether two, one or none of the &/ are on the boundary. Thus, as well as splitting at], for

j=1,2,...,L;, we split at additional points 2/, for j =2,3,..., L;. These additional 2/ are such that

K3

C NI _
ZZ: f +an({II?*.’IJf), j:2,...,L,‘/,

where ¢ is the golden-section ratio (\/§ — 1) /2, and the exponent m takes the value 1 or 2, chosen so that

the sub-box with the smaller function value gets the larger fraction of the interval. Each child sub-box gets

as basepoint the point obtained from x* by changing z; to the x] that is a boundary point of the

corresponding ith coordinate interval; this new basepoint therefore has function value fztj . The opposite
point is derived from y by changing y; to the other end of that interval.

EO5JBF can now rank the coordinates based on an estimated variability of . For each ¢ we compute the
union of the ranges of the quadratic interpolant through any three consecutive #, taking the difference
between the upper and lower bounds obtained as a measure of the variability of F' in coordinate 7. A
vector 7 is populated in such a way that coordinate ¢ has the m;th highest estimated variability. For
tiebreaks, when the x* obtained after splitting coordinate 7 belongs to two sub-boxes, the one that contains
the minimizer of the quadratic models is designated the current sub-box for coordinate ¢ + 1.

Boxes are assigned levels in the following manner. The root box is given level 1. When a sub-box of
level s is split, the child with the smaller fraction of the golden-section split receives level s + 2; all other
children receive level s+ 1. The box with the better function value is given the larger fraction of the
splitting interval and the smaller level because then it is more likely to be split again more quickly. We see
that after the initialization procedure the first level is empty and the non-split boxes have levels
2,...,n, + 2, so it is meaningful to choose s,,,, much larger than n,. Note that the internal structure of
EO05JBF demands that s, be at least n, + 3.

Examples of initializations in two dimensions are given in Figure 1. In both cases the initial point is
x” = (€4 u)/2; on the left the initialization points are

X' =¢ x*=(E+u)/2, x =u,
while on the right the points are

x' = (5¢+u)/6, X

(E+u)/2, X =(€+5u)/6.

EO05JBF.16 Mark 24

EO05 — Global Optimization of a Function E0SJBF

In Figure 1, basepoints and levels after initialization are displayed. Note that these initialization lists
correspond to IINIT = 0 and IINIT = 1, respectively.

4 3
4

8 3

» 3 2 3 243 3 292

3

3
4

4 2

Figure 1

Examples of the initialization procedure
After initialization, a series of sweeps through levels is begun. A sweep is defined by three steps:

(1) scan the list of non-split sub-boxes. Fill a record list b according to b, = 0 if there is no box at level
s, and with b, pointing to a sub-box with the lowest function value among all sub-boxes with level s
otherwise, for 0 < s < Syax;

(i1) the sub-box with label b, is a candidate for splitting. If the sub-box is not to be split, according to the
rules described in Section 10.2, increase its level by 1 and update b, if necessary. If the sub-box is
split, mark it so, insert its children into the list of sub-boxes, and update b if any child with level s’
yields a strict improvement of F' over those sub-boxes at level s';

(iii) increment s by 1. If s = s, then displaying monitoring information and start a new sweep; else if
b, = 0 then repeat this step; else display monitoring information and go to the previous step.

Clearly, each sweep ends after at most s, — 1 visits of the third step.

10.2 Splitting

Each sub-box is stored by EOSJBF as a set of information about the history of the sub-box: the label of its
parent, a label identifying which child of the parent it is, etc. Whenever a sub-box BI[x,y| of level
5 < Smax 1s a candidate for splitting, as described in Section 10.1, we recover x, y, and the number, n;, of
times coordinate j has been split in the history of B. Sub-box B could be split in one of two ways.

(1) Splitting by rank

If s > 2n,(minn; + 1), the box is always split. The splitting index is set to a coordinate i such that
n; = minn;.

(i1) Splitting by expected gain

If s <2n,(minn; + 1), the sub-box could be split along a coordinate where a maximal gain in
function value is expected. This gain is estimated according to a local separable quadratic model
obtained by fitting to 2n, + 1 function values. If the expected gain is too small the sub-box is not
split at all, and its level is increased by 1.

Eventually, a sub-box that is not eligible for splitting by expected gain will reach level
2n, (min n; + 1) + 1 and then be split by rank, as long as s, is large enough. As S, — o0, the
rule for splitting by rank ensures that each coordinate is split arbitrarily often.

Before describing the details of each splitting method, we introduce the procedure for correctly handling
splitting at adaptive points and for dealing with unbounded intervals. Suppose we want to split the ith
coordinate interval [{z;,y;}, where we define [{z;,y;} = [min(x;,y;), max(x;,y;)], for x; € R and
y; € R, and where x is the basepoint of the sub-box being considered. The descendants of the sub-box
should shrink sufficiently fast, so we should not split too close to z;. Moreover, if y; is large we want the
new splitting value to not be too large, so we force it to belong to some smaller interval D{§/7§//},
determined by

¢ =subint(z;,y,), & =z + (" —;)/10,

Mark 24 EO05JBF.17

E0SJBF NAG Library Manual

where the function subint is defined by

sign(y) if 1000|z| < 1 and |y| > 1000;
subint(z, y) = ¢ 10sign(y)|z| if 1000|z| > 1 and |y| > 1000|x|;
Y otherwise.

10.2.1 Splitting by rank

Consider a sub-box B with level s > 2n, (min n;+ 1). Although the sub-box has reached a high level,
there is at least one coordinate along which it has not been split very often. Among the ¢ such that
n; = minn; for B, select the splitting index to be the coordinate with the lowest m; (and hence highest
variability rank). ‘Splitting by rank’ refers to the ranking of the coordinates by n; and ;.

If n; =0, so that B has never been split along coordinate i, the splitting is done according to the
initialization list and the adaptively chosen golden-section split points, as described in Section 10.1. Also
as covered there, new basepoints and opposite points are generated. The children having the smaller
fraction of the golden-section split (that is, those with larger function values) are given level
min{s + 2, Syax - All other children are given level s+ 1.

Otherwise, B ranges between x; and y; in the ith coordinate direction. The splitting value is selected to be
z; = x; + 2(subint(z;,y;) — ;) /3; we are not attempting to split based on a large reduction in function
value, merely in order to reduce the size of a large interval, so z; may not be optimal. Sub-box B is split
at z; and the golden-section split point, producing three parts and requiring only one additional function
evaluation, at the point X' obtained from x by changing the ith coordinate to z;. The child with the smaller
fraction of the golden-section split is given level min{s + 2, ...« }, while the other two parts are given
level s + 1. Basepoints are assigned as follows: the basepoint of the first child is taken to be x, and the
basepoint of the second and third children is the point x'. Opposite points are obtained by changing y; to
the other end of the ¢th coordinate-interval of the corresponding child.

10.2.2 Splitting by expected gain

When a sub-box B has level s < 2n, (min n;+ 1), we compute the optimal splitting index and splitting
value from a local separable quadratic used as a simple local approximation of the objective function. To
fit this curve, for each coordinate we need two additional points and their function values. Such data may
be recoverable from the history of B: whenever the ith coordinate was split in the history of B, we
obtained values that can be used for the current quadratic interpolation in coordinate i.

We loop over i; for each coordinate we pursue the history of B back to the root box, and we take the first
two points and function values we find, since these are expected to be closest to the current basepoint x. If
the current coordinate has not yet been split we use the initialization list. Then we generate a local
separable model e(¢) for F'(§) by interpolation at x and the 2n, additional points just collected:

n
e(§) = F(x) + Zei(fz‘)-
i=1
We define the expected gain é; in function value when we evaluate at a new point obtained by changing

coordinate ¢ in the basepoint, for each ¢, based on two cases:

(1) mn; =0. We compute the expected gain as

é; = min {ff} - .

1<j<L;

Again, we split according to the initialization list, with the new basepoints and opposite points being
as before.

(i) m; > 0. Now, the ¢th component of our sub-box ranges from z; to y;. Using the quadratic partial
correction function

ei(&) = ai(§ — ;) + B (& — 9571)2

we can approximate the maximal gain expected when changing z; only. We will choose the splitting
value from D{f’, §"}. We compute

EO05JBF 18 Mark 24

EO05 — Global Optimization of a Function E0SJBF

é; = min e/(§)
B O

and call z; the minimizer in 0{¢,¢"}.
If the expected best function value f,, satisfies

fexp = F(X) + llglgnnél < fbest’ (1)

where fio 1S the current best function value (including those function values obtained by local
optimization), we expect the sub-box to contain a better point and so we split it, using as splitting
index the component with minimal é;. Equation (1) prevents wasting function calls by avoiding
splitting sub-boxes whose basepoints have bad function values. These sub-boxes will eventually be
split by rank anyway.

We now have a splitting index and a splitting value z;. The sub-box is split at z; as long as z; # y;,
and at the golden-section split point; two or three children are produced. The larger fraction of the
golden-section split receives level s + 1, while the smaller fraction receives level min{s + 2, spay }- If
it is the case that z; # y; and the third child is larger than the smaller of the two children from the
golden-section split, the third child receives level s+ 1. Otherwise it is given the level
min{s + 2, spa }- The basepoint of the first child is set to x, and the basepoint of the second
(and third if it exists) is obtained by changing the ith coordinate of x to z;. The opposite points are
again derived by changing y; to the other end of the ith coordinate interval of B.

If equation (1) does not hold, we expect no improvement. We do not split, and we increase the level
of B by 1.

10.3 Local Search

The local optimization algorithm used by EOSJBF uses linesearches along directions that are determined by
minimizing quadratic models, all subject to bound constraints. Triples of vectors are computed using
coordinate searches based on linesearches. These triples are used in triple search procedures to build local
quadratic models for F. A trust-region-type approach to minimize these models is then carried out, and
more information about the coordinate search and the triple search can be found in Huyer and Neumaier
(1999).

The local search starts by looking for better points without being too local, by making a triple search using
points found by a coordinate search. This yields a new point and function value, an approximation of the
gradient of the objective, and an approximation of the Hessian of the objective. Then the quadratic model
for F' is minimized over a small box, with the solution to that minimization problem then being used as a
linesearch direction to minimize the objective. A measure r is computed to quantify the predictive quality
of the quadratic model.

The third stage is the checking of termination criteria. The local search will stop if more than loclim visits
to this part of the local search have occurred, where loclim is the value of the optional parameter Local
Searches Limit. If that is not the case, it will stop if the limit on function calls has been exceeded (see the
description of the optional parameter Function Evaluations Limit). The final criterion checks if no
improvement can be made to the function value, or whether the approximated gradient g is small, in the
sense that

g|" max([x|. [xol) < loctol(fy — f).

The vector x,4 is the best point at the start of the current loop in this iterative local-search procedure, the
constant loctol is the value of the optional parameter Local Searches Tolerance, f is the objective value at
x, and f, is the smallest function value found by the initialization procedure.

Next, EOSJBF attempts to move away from the boundary, if any components of the current point lie there,
using linesearches along the offending coordinates. Local searches are terminated if no improvement could
be made.

The fifth stage carries out another triple search, but this time it does not use points from a coordinate
search, rather points lying within the trust-region box are taken.

Mark 24 E05JBF.19

E0SJBF NAG Library Manual

The final stage modifies the trust-region box to be bigger or smaller, depending on the quality of the
quadratic model, minimizes the new quadratic model on that box, and does a linesearch in the direction of
the minimizer. The value of r is updated using the new data, and then we go back to the third stage
(checking of termination criteria).

The Hessians of the quadratic models generated by the local search may not be positive definite, so
EOS5JBF uses the general nonlinear optimizer EO4VHF to minimize the models.

11 Optional Parameters

Several optional parameters in EOSJBF define choices in the problem specification or the algorithm logic.
In order to reduce the number of formal parameters of EO5JBF these optional parameters have associated
default values that are appropriate for most problems. Therefore, you need only specify those optional
parameters whose values are to be different from their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional parameter
is provided in Section 11.1.
Defaults

Function Evaluations Limit
Infinite Bound Size

List

Local Searches

Local Searches Limit

Local Searches Tolerance
Maximize

Minimize

Nolist

Repeatability

Splits Limit

Static Limit

Target Objective Error
Target Objective Safeguard
Target Objective Value

Optional parameters may be specified by calling one, or more, of the routines EOSJCF, EOSJDF, EO5JEF,
EOSJFF and EOSJGF before a call to EOSJBF.

EOS5JCF reads options from an external options file, with Begin and End as the first and last lines
respectively, and with each intermediate line defining a single optional parameter. For example,

Begin
Static Limit = 50
End

The call
CALL EO5JCF (IOPTS, COMM, LCOMM, IFAIL)

can then be used to read the file on unit IOPTS. IFAIL will be zero on successful exit. EO5JCF should be
consulted for a full description of this method of supplying optional parameters.

EO0S5JDF, EOSJEF, EOSJFF or EOSJGF can be called to supply options directly, one call being necessary for
each optional parameter. EO5JDF, EOSJEF, EOSJFF or EOSJGF should be consulted for a full description
of this method of supplying optional parameters.

E05JBF.20 Mark 24

EO05 — Global Optimization of a Function E0SJBF

All optional parameters not specified by you are set to their default values. Valid values of optional
parameters specified by you are unaltered by EO5JBF and so remain in effect for subsequent calls to
EO05JBF, unless you explicitly change them.

11.1 Description of the Optional Parameters
For each option, we give a summary line, a description of the optional parameter and details of constraints.
The summary line contains:

a parameter value, where the letters a, ¢ and r denote options that take character, integer and real
values respectively, and where the letter a denotes an option that takes an ‘ON’ or ‘OFF’ value;

the default value, where the symbol € is a generic notation for machine precision (see X02AJF), the
symbol 7., stands for the largest positive model number (see X02ALF), n, represents the number
of non-fixed variables, and the symbol d stands for the maximum number of decimal digits that can
be represented (see X02BEF).

Option names are case-insensitive and must be provided in full; abbreviations are not recognized.
Defaults

This special keyword is used to reset all optional parameters to their default values, and any random state
stored in the array COMM will be destroyed.

Any option value given with this keyword will be ignored. This optional parameter cannot be queried or
got.
Function Evaluations Limit i Default = 10072

This puts an approximate limit on the number of function calls allowed. The total number of calls made is
checked at the top of an internal iteration loop, so it is possible that a few calls more than nf may be
made.

Constraint: nf > 0.
1
Infinite Bound Size r Default = rhax

This defines the ‘infinite’ bound infbnd in the definition of the problem constraints. Any upper bound
greater than or equal to infbnd will be regarded as oo (and similarly any lower bound less than or equal to
—infbnd will be regarded as —o0).

1 1
Constraint: riax < infbnd < riax .

Local Searches a Default ='ON'

If you want to try to accelerate convergence of EO5JBF by starting local searches from candidate minima,
you will require lcsrch to be ‘ON’.

Constraint: lcsrch = "'ON' or 'OFF'.

Local Searches Limit 7 Default = 50

This defines the maximal number of iterations to be used in the trust-region loop of the local-search
procedure.

Constraint: loclim > 0.

Local Searches Tolerance r Default = 2e

The value of loctol is the multiplier used during local searches as a stopping criterion for when the
approximated gradient is small, in the sense described in Section 10.3.

Constraint: loctol > 2e.

Mark 24 E05JBF.21

E0SJBF NAG Library Manual

Minimize Default
Maximize

These keywords specify the required direction of optimization. Any option value given with these
keywords will be ignored.

Nolist Default
List

These options control the echoing of each optional parameter specification as it is supplied. List turns
printing on, Nolist turns printing off. The output is sent to the current advisory message unit (as defined
by X04ABF).

Any option value given with these keywords will be ignored. This optional parameter cannot be queried
or got.
Repeatability a Default ='OFF'

For use with random initialization lists (IINIT = 4). When set to ‘ON’, an internally-initialized random
state is stored in the array COMM for use in subsequent calls to EO5SJBF.

Constraint: repeat ='ON' or 'OFF'.

Splits Limit i Default = |d(n, +2)/3]

Along with the initialization list LIST, this defines a limit on the number of times the root box will be split
along any single coordinate direction. If Local Searches is ‘OFF’ you may find the default value to be too
small.

Constraint: smax > n, + 2.

Static Limit 1 Default = 3n,

As the default termination criterion, computation stops when the best function value is static for stclim
sweeps through levels. This parameter is ignored if you have specified a target value to reach in Target
Objective Value.

Constraint: stclim > 0.

1
Target Objective Error r Default = e

If you have given a target objective value to reach in objval (the value of the optional parameter Target
Objective Value), objerr sets your desired relative error (from above if Minimize is set, from below if
Maximize is set) between OBJ and objval, as described in Section 7. See also the description of the
optional parameter Target Objective Safeguard.

Constraint: objerr > 2e.

1
Target Objective Safeguard r Default = e

If you have given a target objective value to reach in objval (the value of the optional parameter Target
Objective Value), objsfg sets your desired safeguarded termination tolerance, for when objval is close to
Zero.

Constraint. objsfg > 2e.

Target Objective Value T

This parameter may be set if you wish EOSJBF to use a specific value as the target function value to reach
during the optimization. Setting objval overrides the default termination criterion determined by the
optional parameter Static Limit.

EO05JBF.22 (last) Mark 24

	E05JBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	N
	OBJFUN
	N in subprogram OBJFUN
	X in subprogram OBJFUN
	F in subprogram OBJFUN
	NSTATE in subprogram OBJFUN
	IUSER in subprogram OBJFUN
	RUSER in subprogram OBJFUN
	INFORM in subprogram OBJFUN

	IBOUND
	IINIT
	BL
	BU
	SDLIST
	LIST
	NUMPTS
	INITPT
	MONIT
	N in subprogram MONIT
	NCALL in subprogram MONIT
	XBEST in subprogram MONIT
	ICOUNT in subprogram MONIT
	NINIT in subprogram MONIT
	LIST in subprogram MONIT
	NUMPTS in subprogram MONIT
	INITPT in subprogram MONIT
	NBASKT in subprogram MONIT
	XBASKT in subprogram MONIT
	BOXL in subprogram MONIT
	BOXU in subprogram MONIT
	NSTATE in subprogram MONIT
	IUSER in subprogram MONIT
	RUSER in subprogram MONIT
	INFORM in subprogram MONIT

	X
	OBJ
	COMM
	LCOMM
	IUSER
	RUSER
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=-999

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	10 Algorithmic Details
	10.1 Initialization and Sweeps
	10.2 Splitting
	10.2.1 Splitting by rank
	10.2.2 Splitting by expected gain

	10.3 Local Search

	11 Optional Parameters
	11.1 Description of the Optional Parameters
	Defaults
	Function Evaluations Limit
	Infinite Bound Size
	Local Searches
	Local Searches Limit
	Local Searches Tolerance
	Minimize
	Maximize
	Nolist
	List
	Repeatability
	Splits Limit
	Static Limit
	Target Objective Error
	Target Objective Safeguard
	Target Objective Value

	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

