
NAG Library Routine Document

E04KYF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

E04KYF is an easy-to-use quasi-Newton algorithm for finding a minimum of a function F x1; x2; . . . ; xnð Þ,
subject to fixed upper and lower bounds on the independent variables x1; x2; . . . ; xn, when first derivatives
of F are available.

It is intended for functions which are continuous and which have continuous first and second derivatives
(although it will usually work even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04KYF (N, IBOUND, FUNCT2, BL, BU, X, F, G, IW, LIW, W, LW,
IUSER, RUSER, IFAIL)

&

INTEGER N, IBOUND, IW(LIW), LIW, LW, IUSER(*), IFAIL

REAL (KIND=nag_wp) BL(N), BU(N), X(N), F, G(N), W(LW), RUSER(*)

EXTERNAL FUNCT2

3 Description

E04KYF is applicable to problems of the form:

MinimizeF x1; x2; . . . ; xnð Þ subject to lj � xj � uj, j ¼ 1; 2; . . . ; n

when first derivatives are available.

Special provision is made for problems which actually have no bounds on the xj, problems which have
only non-negativity bounds, and problems in which l1 ¼ l2 ¼ . . . ¼ ln and u1 ¼ u2 ¼ . . . ¼ un. You must
supply a subroutine to calculate the values of F xð Þ and its first derivatives at any point x.

From a starting point you supplied there is generated, on the basis of estimates of the curvature of F xð Þ, a
sequence of feasible points which is intended to converge to a local minimum of the constrained function.
An attempt is made to verify that the final point is a minimum.

A typical iteration starts at the current point x where nz (say) variables are free from both their bounds.
The projected gradient vector gz, whose elements are the derivatives of F xð Þ with respect to the free
variables, is known. A unit lower triangular matrix L and a diagonal matrix D (both of dimension nz),

such that LDLT is a positive definite approximation of the matrix of second derivatives with respect to the
free variables (i.e., the projected Hessian) are also held. The equations

LDLTpz ¼ �gz
are solved to give a search direction pz, which is expanded to an n-vector p by an insertion of appropriate
zero elements. Then � is found such that F xþ �pð Þ is approximately a minimum (subject to the fixed
bounds) with respect to �; x is replaced by xþ �p, and the matrices L and D are updated so as to be
consistent with the change produced in the gradient by the step �p. If any variable actually reaches a
bound during the search along p, it is fixed and nz is reduced for the next iteration.

There are two sets of convergence criteria – a weaker and a stronger. Whenever the weaker criteria are
satisfied, the Lagrange multipliers are estimated for all the active constraints. If any Lagrange multiplier
estimate is significantly negative, then one of the variables associated with a negative Lagrange multiplier
estimate is released from its bound and the next search direction is computed in the extended subspace
(i.e., nz is increased). Otherwise minimization continues in the current subspace provided that this is
practicable. When it is not, or when the stronger convergence criteria are already satisfied, then, if one or
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more Lagrange multiplier estimates are close to zero, a slight perturbation is made in the values of the
corresponding variables in turn until a lower function value is obtained. The normal algorithm is then
resumed from the perturbed point.

If a saddle point is suspected, a local search is carried out with a view to moving away from the saddle
point. A local search is also performed when a point is found which is thought to be a constrained
minimum.

4 References

Gill P E and Murray W (1976) Minimization subject to bounds on the variables NPL Report NAC 72
National Physical Laboratory

5 Parameters

1: N – INTEGER Input

On entry: the number n of independent variables.

Constraint: N � 1.

2: IBOUND – INTEGER Input

On entry: indicates whether the facility for dealing with bounds of special forms is to be used. It
must be set to one of the following values:

IBOUND ¼ 0
If you are supplying all the lj and uj individually.

IBOUND ¼ 1
If there are no bounds on any xj.

IBOUND ¼ 2
If all the bounds are of the form 0 � xj.

IBOUND ¼ 3
If l1 ¼ l2 ¼ � � � ¼ ln and u1 ¼ u2 ¼ � � � ¼ un.

Constraint: 0 � IBOUND � 3.

3: FUNCT2 – SUBROUTINE, supplied by the user. External Procedure

You must supply FUNCT2 to calculate the values of the function F xð Þ and its first derivative @F
@xj

at

any point x. It should be tested separately before being used in conjunction with E04KYF (see the
E04 Chapter Introduction).

The specification of FUNCT2 is:

SUBROUTINE FUNCT2 (N, XC, FC, GC, IUSER, RUSER)

INTEGER N, IUSER(*)

REAL (KIND=nag_wp) XC(N), FC, GC(N), RUSER(*)

1: N – INTEGER Input

On entry: the number n of variables.

2: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the function and derivatives are required.

3: FC – REAL (KIND=nag_wp) Output

On exit: the value of the function F at the current point x.
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4: GCðNÞ – REAL (KIND=nag_wp) array Output

On exit: GCðjÞ must be set to the value of the first derivative @F
@xj

at the point x, for

j ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

FUNCT2 is called with the parameters IUSER and RUSER as supplied to E04KYF. You
are free to use the arrays IUSER and RUSER to supply information to FUNCT2 as an
alternative to using COMMON global variables.

FUNCT2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04KYF is called. Parameters denoted as Input must not be changed by
this procedure.

4: BLðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the lower bounds lj.

If IBOUND is set to 0, you must set BLðjÞ to lj, for j ¼ 1; 2; . . . ; n. (If a lower bound is not

specified for a particular xj, the corresponding BLðjÞ should be set to �106.)

If IBOUND is set to 3, you must set BLð1Þ to l1; E04KYF will then set the remaining elements of
BL equal to BLð1Þ.
On exit: the lower bounds actually used by E04KYF.

5: BUðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the upper bounds uj.

If IBOUND is set to 0, you must set BUðjÞ to uj, for j ¼ 1; 2; . . . ; n. (If an upper bound is not

specified for a particular xj, the corresponding BUðjÞ should be set to 106.)

If IBOUND is set to 3, you must set BUð1Þ to u1; E04KYF will then set the remaining elements of
BU equal to BUð1Þ.
On exit: the upper bounds actually used by E04KYF.

6: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n. The routine checks the gradient at the starting point, and is more likely to detect
any error in your programming if the initial XðjÞ are nonzero and mutually distinct.

On exit: the lowest point found during the calculations. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the jth
component of the position of the minimum.

7: F – REAL (KIND=nag_wp) Output

On exit: the value of F xð Þ corresponding to the final point stored in X.

8: GðNÞ – REAL (KIND=nag_wp) array Output

On exit: the value of @F
@xj

corresponding to the final point stored in X, for j ¼ 1; 2; . . . ; n; the value

of GðjÞ for variables not on a bound should normally be close to zero.

9: IWðLIWÞ – INTEGER array Output

On exit: if IFAIL ¼ 0, 3 or 5, the first N elements of IW contain information about which variables
are currently on their bounds and which are free. Specifically, if xi is:
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– fixed on its upper bound, IWðiÞ is �1;

– fixed on its lower bound, IWðiÞ is �2;

– effectively a constant (i.e., lj ¼ uj), IWðiÞ is �3;

– free, IWðiÞ gives its position in the sequence of free variables.

In addition, IWðNþ 1Þ contains the number of free variables (i.e., nz). The rest of the array is used
as workspace.

10: LIW – INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which E04KYF is
called.

Constraint: LIW � Nþ 2.

11: WðLWÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0, 3 or 5, WðiÞ contains the ith element of the projected gradient vector gz, for
i ¼ 1; 2; . . . ;N. In addition, WðNþ 1Þ contains an estimate of the condition number of the
projected Hessian matrix (i.e., k). The rest of the array is used as workspace.

12: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04KYF is
called.

Constraint: LW � max 10� Nþ N� N� 1ð Þ=2; 11ð Þ.

13: IUSERð�Þ – INTEGER array User Workspace
14: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04KYF, but are passed directly to FUNCT2 and may be used
to pass information to this routine as an alternative to using COMMON global variables.

15: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Note: E04KYF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or IBOUND < 0,
or IBOUND > 3,
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or IBOUND ¼ 0 and BLðjÞ > BUðjÞ for some j,
or IBOUND ¼ 3 and BLð1Þ > BUð1Þ,
or LIW < Nþ 2,
or LW < max 11; 10� Nþ N� N� 1ð Þ=2ð Þ.

IFAIL ¼ 2

There have been 100� n function evaluations, yet the algorithm does not seem to be converging.
The calculations can be restarted from the final point held in X. The error may also indicate that
F xð Þ has no minimum.

IFAIL ¼ 3

The conditions for a minimum have not all been met but a lower point could not be found and the
algorithm has failed.

IFAIL ¼ 4

An overflow has occurred during the computation. This is an unlikely failure, but if it occurs you
should restart at the latest point given in X.

IFAIL ¼ 5
IFAIL ¼ 6
IFAIL ¼ 7
IFAIL ¼ 8

There is some doubt about whether the point x found by E04KYF is a minimum. The degree of
confidence in the result decreases as IFAIL increases. Thus, when IFAIL ¼ 5 it is probable that the
final x gives a good estimate of the position of a minimum, but when IFAIL ¼ 8 it is very unlikely
that the routine has found a minimum.

IFAIL ¼ 9

In the search for a minimum, the modulus of one of the variables has become very large � 106
� �

.
This indicates that there is a mistake in FUNCT2, that your problem has no finite solution, or that
the problem needs rescaling (see Section 8).

IFAIL ¼ 10

It is very likely that you have made an error in forming the gradient.

If you are dissatisfied with the result (e.g., because IFAIL ¼ 5, 6, 7 or 8), it is worth restarting the
calculations from a different starting point (not the point at which the failure occurred) in order to avoid
the region which caused the failure. If persistent trouble occurs it may be advisable to try E04KZF.

7 Accuracy

A successful exit (IFAIL ¼ 0) is made from E04KYF when (B1, B2 and B3) or B4 hold, and the local
search confirms a minimum, where

B1 	 � kð Þ � p kð Þ
���

��� < xtol þ
ffiffi
�
p

ð Þ � 1:0þ x kð Þ
���

���
� �

B2 	 F kð Þ � F k�1ð Þ
���

��� < x2
tol þ �

� �
� 1:0þ F kð Þ

���
���

� �

B3 	 g kð Þ
z

���
��� < �1=3 þ xtol

� �
� 1:0þ F kð Þ

���
���

� �

B4 	 g kð Þ
z

���
��� < 0:01�

ffiffi
�
p

.

(Quantities with superscript k are the values at the kth iteration of the quantities mentioned in Section 3,
xtol ¼ 100

ffiffi
�
p

, � is the machine precision and :k k denotes the Euclidean norm. The vector gz is returned in
the array W.)
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If IFAIL ¼ 0, then the vector in X on exit, xsol, is almost certainly an estimate of the position of the
minimum, xtrue, to the accuracy specified by xtol.

If IFAIL ¼ 3 or 5, xsol may still be a good estimate of xtrue, but the following checks should be made. Let
k denote an estimate of the condition number of the projected Hessian matrix at xsol. (The value of k is
returned in WðNþ 1Þ). If

(i) the sequence F x kð Þ
� �n o

converges to F xsolð Þ at a superlinear or a fast linear rate,

(ii) gz xxolð Þk k2 < 10:0� � and

(iii) k < 1:0= gz xsolð Þk k,
then it is almost certain that xsol is a close approximation to the position of a minimum. When (ii) is true,
then usually F xsolð Þ is a close approximation to F xtrueð Þ.
When a successful exit is made then, for a computer with a mantissa of t decimals, one would expect to
get about t=2� 1 decimals accuracy in x, and about t� 1 decimals accuracy in F , provided the problem
is reasonably well scaled.

8 Further Comments

The number of iterations required depends on the number of variables, the behaviour of F xð Þ and the
distance of the starting point from the solution. The number of operations performed in an iteration of

E04KYF is roughly proportional to n2. In addition, each iteration makes at least one call of FUNCT2.
So, unless F xð Þ and the gradient vector can be evaluated very quickly, the run time will be dominated by
the time spent in FUNCT2.

Ideally the problem should be scaled so that at the solution the value of F xð Þ and the corresponding values
of x1; x2; . . . ; xn are each in the range �1;þ1ð Þ, and so that at points a unit distance away from the
solution, F is approximately a unit value greater than at the minimum. It is unlikely that you will be able
to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible scaling
will reduce the difficulty of the minimization problem, so that E04KYF will take less computer time.

9 Example

A program to minimize

F ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4

subject to

1 � x1 � 3
�2 � x2 � 0

1 � x4 � 3,

starting from the initial guess 3;�1; 0; 1ð Þ.

9.1 Program Text

! E04KYF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

Module e04kyfe_mod

! E04KYF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 4, nout = 6
Integer, Parameter :: liw = n + 2
Integer, Parameter :: lw = 10*n + n*(n-1)/2
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Contains
Subroutine funct2(n,xc,fc,gc,iuser,ruser)

! Routine to evaluate objective function and its 1st derivatives.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fc
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: gc(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: x1, x2, x3, x4

! .. Executable Statements ..
x1 = xc(1)
x2 = xc(2)
x3 = xc(3)
x4 = xc(4)
fc = (x1+10.0_nag_wp*x2)**2 + 5.0_nag_wp*(x3-x4)**2 + &

(x2-2.0_nag_wp*x3)**4 + 10.0_nag_wp*(x1-x4)**4
gc(1) = 2.0_nag_wp*(x1+10.0_nag_wp*x2) + 40.0_nag_wp*(x1-x4)**3
gc(2) = 20.0_nag_wp*(x1+10.0_nag_wp*x2) + 4.0_nag_wp*(x2-2.0_nag_wp*x3 &

)**3
gc(3) = 10.0_nag_wp*(x3-x4) - 8.0_nag_wp*(x2-2.0_nag_wp*x3)**3
gc(4) = -10.0_nag_wp*(x3-x4) - 40.0_nag_wp*(x1-x4)**3

Return

End Subroutine funct2
End Module e04kyfe_mod
Program e04kyfe

! E04KYF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04kyf, nag_wp
Use e04kyfe_mod, Only: funct2, liw, lw, n, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: f
Integer :: ibound, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: bl(n), bu(n), g(n), ruser(1), &

w(lw), x(n)
Integer :: iuser(1), iw(liw)

! .. Executable Statements ..
Write (nout,*) ’E04KYF Example Program Results’

x(1:n) = (/3.0_nag_wp,-1.0_nag_wp,0.0_nag_wp,1.0_nag_wp/)
ibound = 0

! X(3) is unconstrained, so we set BL(3) to a large negative
! number and BU(3) to a large positive number.

bl(1:n) = (/1.0_nag_wp,-2.0_nag_wp,-1.0E6_nag_wp,1.0_nag_wp/)
bu(1:n) = (/3.0_nag_wp,0.0_nag_wp,1.0E6_nag_wp,3.0_nag_wp/)

ifail = -1
Call e04kyf(n,ibound,funct2,bl,bu,x,f,g,iw,liw,w,lw,iuser,ruser,ifail)

Select Case (ifail)
Case (0,2:)

Write (nout,*)
Write (nout,99999) ’Function value on exit is ’, f
Write (nout,99998) ’at the point’, x(1:n)
Write (nout,*) ’The corresponding (machine dependent) gradient is’
Write (nout,99997) g(1:n)

End Select

E04 – Minimizing or Maximizing a Function E04KYF

Mark 24 E04KYF.7



99999 Format (1X,A,F9.4)
99998 Format (1X,A,4F9.4)
99997 Format (13X,4E12.4)

End Program e04kyfe

9.2 Program Data

None.

9.3 Program Results

E04KYF Example Program Results

Function value on exit is 2.4338
at the point 1.0000 -0.0852 0.4093 1.0000
The corresponding (machine dependent) gradient is

0.2953E+00 0.3022E-08 -0.1236E-07 0.5907E+01
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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