E02 — Curve and Surface Fitting E02DAF

NAG Library Routine Document
E02DAF

Note: before using this routine, please read the Users” Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

EO02DAF forms a minimal, weighted least squares bicubic spline surface fit with prescribed knots to a
given set of data points.

2 Specification

SUBROUTINE EO2DAF (M, PX, PY, X, Y, F, W, LAMDA, MU, POINT, NPOINT, DL, C, &
NC, WS, NWS, EPS, SIGMA, RANK, IFAIL)

INTEGER M, PX, PY, POINT(NPOINT), NPOINT, NC, NWS, RANK, IFAIL

REAL (KIND=nag_wp) X(M), Y(M), F(M), W(M), LAMDA(PX), MU(PY), DL(NC), &

C(NC), WS(NWS), EPS, SIGMA

3 Description

E02DAF determines a bicubic spline fit s(z,y) to the set of data points (z,,y,, f.) with weights w,, for
r=1,2,...,m. The two sets of internal knots of the spline, {\} and {x}, associated with the variables x
and y respectively, are prescribed by you. These knots can be thought of as dividing the data region of the
(z,y) plane into panels (see Figure 1 in Section 5). A bicubic spline consists of a separate bicubic
polynomial in each panel, the polynomials joining together with continuity up to the second derivative
across the panel boundaries.

s(x,y) has the property that X, the sum of squares of its weighted residuals p,, for r =1,2,..., m, where
Pr :wr(s(xrayr) _fr) (1)

is as small as possible for a bicubic spline with the given knot sets. The routine produces this minimized
value of X and the coefficients c;; in the B-spline representation of s(x,y) — see Section 8. EO02DEF,
EO02DFF and E02DHF are available to compute values and derivatives of the fitted spline from the
coefficients c;;.

The least squares criterion is not always sufficient to determine the bicubic spline uniquely: there may be a
whole family of splines which have the same minimum sum of squares. In these cases, the routine selects
from this family the spline for which the sum of squares of the coefficients c;; is smallest: in other words,
the minimal least squares solution. This choice, although arbitrary, reduces the risk of unwanted
fluctuations in the spline fit. The method employed involves forming a system of m linear equations in the
coefficients ¢;; and then computing its least squares solution, which will be the minimal least squares
solution when appropriate. The basis of the method is described in Hayes and Halliday (1974). The
matrix of the equation is formed using a recurrence relation for B-splines which is numerically stable (see
Cox (1972) and de Boor (1972) — the former contains the more elementary derivation but, unlike de Boor
(1972), does not cover the case of coincident knots). The least squares solution is also obtained in a stable
manner by using orthogonal transformations, viz. a variant of Givens rotation (see Gentleman (1973)).
This requires only one row of the matrix to be stored at a time. Advantage is taken of the stepped-band
structure which the matrix possesses when the data points are suitably ordered, there being at most sixteen
nonzero elements in any row because of the definition of B-splines. First the matrix is reduced to upper
triangular form and then the diagonal elements of this triangle are examined in turn. When an element is
encountered whose square, divided by the mean squared weight, is less than a threshold e, it is replaced by
zero and the rest of the elements in its row are reduced to zero by rotations with the remaining rows. The
rank of the system is taken to be the number of nonzero diagonal elements in the final triangle, and the
nonzero rows of this triangle are used to compute the minimal least squares solution. If all the diagonal
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elements are nonzero, the rank is equal to the number of coefficients ¢;; and the solution obtained is the
ordinary least squares solution, which is unique in this case.

4 References

Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134—149
de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50—-62

Gentleman W M (1973) Least-squares computations by Givens transformations without square roots J.
Inst. Math. Applic. 12 329-336

Hayes J G and Halliday J (1974) The least-squares fitting of cubic spline surfaces to general data sets J.
Inst. Math. Appl. 14 89-103

5 Parameters

1: M — INTEGER Input
On entry: m, the number of data points.
Constraint: M > 1.

2: PX — INTEGER Input

3: PY — INTEGER Input
On entry: the total number of knots A and p associated with the variables = and vy, respectively.

Constraint: PX > 8 and PY > 8.
(They are such that PX — 8 and PY — 8 are the corresponding numbers of interior knots.) The
running time and storage required by the routine are both minimized if the axes are labelled so that
PY is the smaller of PX and PY.

4: X(M) — REAL (KIND=nag_wp) array Input

5: Y(M) — REAL (KIND=nag_wp) array Input

6: F(M) — REAL (KIND=nag_wp) array Input
On entry: the coordinates of the data point (z,,y,, f,), for r =1,2,...,m. The order of the data
points is immaterial, but see the array POINT.

7: W(M) — REAL (KIND=nag_wp) array Input
On entry: the weight w, of the rth data point. It is important to note the definition of weight
implied by the equation (1) in Section 3, since it is also common usage to define weight as the
square of this weight. In this routine, each w, should be chosen inversely proportional to the
(absolute) accuracy of the corresponding f,, as expressed, for example, by the standard deviation or
probable error of the f.. When the f, are all of the same accuracy, all the w, may be set equal to
1.0.

8: LAMDA(PX) — REAL (KIND=nag_wp) array Input/Output

On entry: LAMDA (i + 4) must contain the ith interior knot \; 4 associated with the variable z, for
t=1,2,...,PX—8. The knots must be in nondecreasing order and lie strictly within the range
covered by the data values of x. A knot is a value of x at which the spline is allowed to be
discontinuous in the third derivative with respect to x, though continuous up to the second
derivative. This degree of continuity can be reduced, if you require, by the use of coincident knots,
provided that no more than four knots are chosen to coincide at any point. Two, or three, coincident
knots allow loss of continuity in, respectively, the second and first derivative with respect to = at the
value of = at which they coincide. Four coincident knots split the spline surface into two
independent parts. For choice of knots see Section 8.

On exit: the interior knots LAMDA(5) to LAMDA(PX —4) are unchanged, and the segments
LAMDAC(1 : 4) and LAMDA(PX — 3 : PX) contain additional (exterior) knots introduced by the
routine in order to define the full set of B-splines required. The four knots in the first segment are
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10:

11:

all set equal to the lowest data value of x and the other four additional knots are all set equal to the
highest value: there is experimental evidence that coincident end-knots are best for numerical
accuracy. The complete array must be left undisturbed if EO2DEF or E02DFF is to be used
subsequently.

MU(PY) — REAL (KIND=nag_wp) array Input/Output

On entry: MU(i 4+ 4) must contain the ith interior knot y,., associated with the variable y, for
i=1,2,...,PY —8.

On exit: the same remarks apply to MU as to LAMDA above, with Y replacing X, and y replacing
x.

POINT(NPOINT) — INTEGER array Input

On entry: indexing information usually provided by E02ZAF which enables the data points to be
accessed in the order which produces the advantageous matrix structure mentioned in Section 3.
This order is such that, if the (z,y) plane is thought of as being divided into rectangular panels by
the two sets of knots, all data in a panel occur before data in succeeding panels, where the panels
are numbered from bottom to top and then left to right with the usual arrangement of axes, as
indicated in Figure 1.

MU(8)
panel 4 8 12
MU(7)
panel 3 7 11
MU(6)
panel 2 6 10
MU(5)
Y panel 1 5 9
MU(4)
LAMDA(4) LAMDA(5) LAMDA(6) LAMDA(7)
X
Figure 1

A data point lying exactly on one or more panel sides is considered to be in the highest numbered
panel adjacent to the point. EO02ZAF should be called to obtain the array POINT, unless it is
provided by other means.

NPOINT — INTEGER Input

On entry: the dimension of the array POINT as declared in the (sub)program from which EO2DAF
is called.

Constraint: NPOINT > M + (PX — 7) x (PY — 7).
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12:

15:
16:

19:

20:

DL(NC) — REAL (KIND=nag_wp) array Output

On exit: gives the squares of the diagonal elements of the reduced triangular matrix, divided by the
mean squared weight. It includes those elements, less than e, which are treated as zero (see
Section 3).

C(NC) — REAL (KIND=nag_wp) array Output

On exit: gives the coefficients of the fit. C((PY —4) x (i — 1) + j) is the coefficient c;; of Sections
3and 8, fort =1,2,...,PX—4and j=1,2,...,PY — 4. These coefficients are used by EO2DEF
or EO2DFF to calculate values of the fitted function.

NC — INTEGER Input
On entry: the value (PX —4) x (PY —4).

WS(NWS) — REAL (KIND=nag_wp) array Workspace
NWS — INTEGER Input

On entry: the dimension of the array WS as declared in the (sub)program from which E02DAF is
called.

Constraint: NWS > (2 x NC + 1) x (3 x PY — 6) — 2.

EPS — REAL (KIND=nag wp) Input

On entry: a threshold e for determining the effective rank of the system of linear equations. The
rank is determined as the number of elements of the array DL which are nonzero. An element of
DL is regarded as zero if it is less than €. Machine precision is a suitable value for € in most
practical applications which have only 2 or 3 decimals accurate in data. If some coefficients of the
fit prove to be very large compared with the data ordinates, this suggests that e should be increased
so as to decrease the rank. The array DL will give a guide to appropriate values of € to achieve this,
as well as to the choice of € in other cases where some experimentation may be needed to determine
a value which leads to a satisfactory fit.

SIGMA — REAL (KIND=nag wp) Output

On exit: X, the weighted sum of squares of residuals. This is not computed from the individual
residuals but from the right-hand sides of the orthogonally-transformed linear equations. For further
details see page 97 of Hayes and Halliday (1974). The two methods of computation are
theoretically equivalent, but the results may differ because of rounding error.

RANK — INTEGER Output
On exit: the rank of the system as determined by the value of the threshold e.

RANK = NC
The least squares solution is unique.

RANK # NC
The minimal least squares solution is computed.

IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value —1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6  Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL =1

At least one set of knots is not in nondecreasing order, or an interior knot is outside the range of the
data values.

IFAIL =2

More than four knots coincide at a single point, possibly because all data points have the same value
of = (or y) or because an interior knot coincides with an extreme data value.

IFAIL =3
Array POINT does not indicate the data points in panel order. Call EO2ZAF to obtain a correct
array.
IFAIL =4
On entry, M < 1,
or PX < 8,
or PY < 8,
or NC # (PX —4) x (PY — 4),
or NWS is too small,
or NPOINT is too small.
IFAIL =5

All the weights w, are zero or rank determined as zero.

7  Accuracy

The computation of the B-splines and reduction of the observation matrix to triangular form are both
numerically stable.

8 Further Comments

The time taken is approximately proportional to the number of data points, m, and to (3 x (PY — 4) + 4)7.

The B-spline representation of the bicubic spline is

s(x,y) = ZcijMi(x)Nj(y)
]
summed over i=1,2,...,PX—~4 and over j=1,2,...,PY 4 Here M;(x) and N,(y) denote
normalized cubic B-splines, the former defined on the knots A;, A, q,..., A; 14 and the latter on the knots
Hjs bjg1s - -+ Hjpa. For further details, see Hayes and Halliday (1974) for bicubic splines and de Boor
(1972) for normalized B-splines.

The choice of the interior knots, which help to determine the spline’s shape, must largely be a matter of
trial and error. It is usually best to start with a small number of knots and, examining the fit at each stage,
add a few knots at a time in places where the fit is particularly poor. In intervals of x or y where the
surface represented by the data changes rapidly, in function value or derivatives, more knots will be needed
than elsewhere. In some cases guidance can be obtained by analogy with the case of coincident knots: for
example, just as three coincident knots can produce a discontinuity in slope, three close knots can produce
rapid change in slope. Of course, such rapid changes in behaviour must be adequately represented by the
data points, as indeed must the behaviour of the surface generally, if a satisfactory fit is to be achieved.
When there is no rapid change in behaviour, equally-spaced knots will often suffice.
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In all cases the fit should be examined graphically before it is accepted as satisfactory.
The fit obtained is not defined outside the rectangle
Ay S @ < Apx 3, Mg S Y < ppy 3.

The reason for taking the extreme data values of z and y for these four knots is that, as is usual in data
fitting, the fit cannot be expected to give satisfactory values outside the data region. If, nevertheless, you
require values over a larger rectangle, this can be achieved by augmenting the data with two artificial data
points (a,c,0) and (b, d,0) with zero weight, where a < x < b, ¢ < y < d defines the enlarged rectangle.
In the case when the data are adequate to make the least squares solution unique (RANK = NC), this
enlargement will not affect the fit over the original rectangle, except for possibly enlarged rounding errors,
and will simply continue the bicubic polynomials in the panels bordering the rectangle out to the new
boundaries: in other cases the fit will be affected. Even using the original rectangle there may be regions
within it, particularly at its corners, which lie outside the data region and where, therefore, the fit will be
unreliable. For example, if there is no data point in panel 1 of Figure 1 in Section 5, the least squares
criterion leaves the spline indeterminate in this panel: the minimal spline determined by the subroutine in
this case passes through the value zero at the point (A, ti4).

9  Example

This example reads a value for ¢, and a set of data points, weights and knot positions. If there are more y
knots than x knots, it interchanges the x and y axes. It calls EO2ZAF to sort the data points into panel
order, E02DAF to fit a bicubic spline to them, and EO2DEF to evaluate the spline at the data points.

Finally it prints:

— the weighted sum of squares of residuals computed from the linear equations;
— the rank determined by E02DAF;

— data points, fitted values and residuals in panel order;

— the weighted sum of squares of the residuals; and

— the coefficients of the spline fit.

The program is written to handle any number of datasets.

Note: the data supplied in this example is not typical of a realistic problem: the number of data points
would normally be much larger (in which case the array dimensions and the value of NWS in the program
would have to be increased); and the value of ¢ would normally be much smaller on most machines (see
Section 5; the relatively large value of 10™° has been chosen in order to illustrate a minimal least squares
solution when RANK < NC; in this example NC = 24).

9.1 Program Text

Program eO2dafe
! EO2DAF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

! .. Use Statements

Use nag_library, Only: e0O2daf, e0O2def, e02zaf, nag_wp
! .. Implicit None Statement

Implicit None
! .. Parameters

Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: label(2) = (/'X",'Y"/)
! .. Local Scalars
Real (Kind=nag_wp) :: eps, sigma, sum, temp
Integer :: i, iadres, ifail, itemp, Jj, m, &

nadres, nc, npoint, nws, px, py, rank
! .. Local Arrays
Real (Kind=nag_wp), Allocatable =:: c(:), d1(:), f(:), ff(:), lamda(:), &
mu(:), w(:), wrk(:), ws(:), x(:), y(:)
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Integer, Allocatable :: adres(:), iwrk(:), point(:)
! .. Executable Statements
Write (nout,*) ’'EO2DAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Read data, interchanging X and Y axes if PX < PY
Read (nin,*) eps
Read (nin,*) m

Read (nin,*) px, py

If (px<py) Then
itemp = px

bx = py

py = 1temp

itemp = 1
Else

itemp = O
End If

nadres = (px-7)*(py-7)

npoint = m + (px-7)*(py-7)

nc = (px-4)*(py-4)

nws = (2%nc+1)*(3*py-6) - 2

Allocate (lamda(px),mu(py),x(m),y(m),f(m),ff(m),w(m),dl(nc),c(nc), &
ws (nws) ,point (npoint) ,adres(nadres) ,wrk(py-4),iwrk(py-4))

If (itemp==1) Then
Read (nin,*)(y(i),x(1i),£(1i),w(i),i=1,m)

If (py>8) Then
Read (nin,*) mu(5:(py-4))
End If

If (px>8) Then
Read (nin,*) lamda(5:(px-4))
End If

Else
Read (nin,*) (x(i),y(1i),£(1i),w(i),i=1,m)

If (px>8) Then

Read (nin,*) lamda(5:(px-4))
End If

If (py>8) Then
Read (nin,*) mu(5:(py-4))
End If
End If

! Sort points into panel order

ifail = 0
Call eO2zaf (px,py,lamda,mu,m,x,y,point,npoint,adres,nadres,ifail)

Write (nout,*)
Write (nout,99995) ’'Interior ', label(itemp+1), ’'-knots’

If (px==8) Then
Write (nout,*) ’None’
Else
Do j =5, px - 4
Write (nout,99996) lamda(j)
End Do

End If
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Write (nout,*)
Write (nout,99995) ’'Interior ', label(2-itemp), ’'-knots’

If (py==8) Then
Write (nout,*) ’'None’
Else
Do j =5, py - 4
Write (nout,99996) mu(j)
End Do
End If

! Fit bicubic spline to data points

ifail = 0

Call e0O2daf(m,px,py,X,y,f,w,lamda,mu,point,npoint,dl,c,nc,ws,nws,eps, &

sigma,rank,ifail)
Write (nout,*)
Write (nout,99999) ’'Sum of squares of residual RHS'’, sigma
Write (nout,*)
Write (nout,99998) ’'Rank’, rank

! Evaluate spline at the data points

ifail = 0
Call e02def(m,px,py,x,y,lamda,mu,c,ff,wrk,iwrk,ifail)
sum = 0.0EO_nag_wp
If (itemp==1) Then
Write (nout,*)
Write (nout,*) ‘X and Y have been interchanged’
End If

! Output data points, fitted values and residuals

Write (nout,*)

Write (nout,*) ' X Y Data Fit Residual’
Do 1 = 1, nadres
iadres = 1 + m
loop: Do
iadres = point(iadres)

If (iadres<=0) Then
Exit loop
End If

temp = ff(iadres) - f(iadres)

Write (nout,99997) x(iadres), y(iadres), f(iadres), ff(iadres),

sum = sum + (temp*w(iadres))**2
End Do loop

End Do
Write (nout,*)
Write (nout,99999) ’'Sum of squared residuals’, sum
Write (nout,*)
Write (nout,*) ’Spline coefficients’
Do i =1, px - 4

Write (nout,99996) (c((i-1)*(py-4)+3j),j=1,py-4)
End Do

99999 Format (1X,A,1P,E16.2)

E02DAF.8
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99998 Fo
99997 Fo
99996 Fo
99995 Fo

rmat
rmat
rmat
rmat

(1X,A,I5)
(1X,4F11.4,E11.2)
(1X,6F11.4)
(1X,A,A1,A)
End Program eO2dafe

9.2 Program Data

EO2DAF Example Program Data

0.000001
30
8
10
-0.52
-0.61
0.93
0.09
0.88
-0.70
1.00
1.00
0.30
-0.77
-0.23
-1.00
-0.26
-0.83
0.22
0.89
-0.80
-0.88
0.68
-0.14
0.67
-0.90
-0.84
0.84
0.15
-0.91
-0.35
-0.16
-0.35
-1.00
-0.5
0.0

|
lcNoNoNoNoNoNoNoNoNoNoNoNoNoNol T NoNoNoNol T NoNoNoNoNoNe)]

.60
.95
.87
.84
.17
.87

.10
.24
77
.32
.00

.66
.93
.15
.99
.54
.44
.72
.63
.40
.20
.43
.28
.24
.86
.41
.05
.00

.93
.79
.36
.52
.49
.76

.48
.65
.82
.92
.00

.01
.47
.49
.84
.42
.47
.15
.44
.34
.78

.70
.52
.66
.32
.66
.00

RPRPNMOOOONWONONOOONORORPROOORFROOORrO

9.3 Program Results
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EO2DAF Example Program Results

Interior Y-knots

-0.
0.

5000
0000

Interior X-knots

None

Sum of squares of residual RHS

Rank

22

X and Y have been interchanged

X
-0.
-0.
-0.
-0.
-0.
-0.
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9500
8700
7700
6300
6600
5400

-0.
-0.
-0.
-0.
-0.
-0.

Y

6100
7000
7700
2600
8300
8800

-1.
-1.
-1.

8.

-2
-2

Data

7900
7600
8200
8800
.0100
.4200

1.47E+01

-1.
-1.

-2

7.
-1.

-2

Fit

7931
7521
.4301
6346
5815
.6795

Residual

-0.
0.
-0.
-0.
0.
-0.

31E-02
79E-02
61E+00
12E+01
43E+00
26E+00
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-0.
.0000
.4000
.2400
.4100
.0500
.6000
.8700
.8400
.1700
.0000
.1000
.2400
.3200
.0000
.9300
.1500
.9900
.4400
.6300
.2000
.4300
.2800
.8600

cNoNeoNeoNeoNoNoNoNol tNoloNol HeolNoNeoNe]

Sum of

Spline

-1.
24.
-29.

10.

7200

squared residuals

Polynomial Surface

lcNoNeoNeoNeoNeoNoNoNol  NoNeok ol HeoNeoNe]

.1400
.0000
.9000
.9100
.1600
.3500
.5200
.9300
.0900
.8800
.0000
.0000
.3000
.2300
.0000
.2200
.8900
.8000
.6800
.6700
.8400
.8400
.1500
.3500

7
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i

I

[
w3

|
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coefficients
0228 115.4668 -433.
8426 —-140.1485 258.
4878 132.2933 -173.
.9575 -51.6200 67.
0577 4.7543 -15.
.0835 -2.7932 7
0 SO
CTOSSNY
0 CSSNS
Wi

7

7
iy,
v

.1500
.0000
.3400
.5200
.3200
.6600
.9300
.3600
.5200
.4900
.3300
.4800
.6500
.9200
.0000
.4700
.4900
.8400
.4700
.4400
.7800
.4400
.7000
.6600

1.47E+01

5558
5042
5103
6666
3533

.7708

Evaluation of Least-squares Bi-cubic Spline Fit
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-68.
15.
20.
-5.
-0.

0.

.5708
.0228
.6955
.7072
.7039
.2865
.9441
.3529
.5024
.4705
.6315
.4910
.9241
.3692
.0835
.4912
.4414
.5495
.5862
.6288
.7123
.6888
L7713
.9347

1973
6756
0983
8765
3260
6315

0.42E+00
.23E-01
.14E+01
0.18E+01
0.38E+00
0.63E+00
0.14E-01
.71E-02
.18E-01
.20E-01
0.30E+00
0.10E+01
0.27E+00
.13E+01
0.84E-01
0.10E+01
.49E-01
.29E+00
0.11E+01
0.19E+00
.11E+01
0.25E+00
0.71E-01
0.27E+00
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