
NAG Library Routine Document

D02HBF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02HBF solves a two-point boundary value problem for a system of ordinary differential equations, using
initial value techniques and Newton iteration; it generalizes subroutine D02HAF to include the case where
parameters other than boundary values are to be determined.

2 Specification

SUBROUTINE D02HBF (P, N1, PE, E, N, SOLN, M1, FCN, BC, RANGE, W, SDW,
IFAIL)

&

INTEGER N1, N, M1, SDW, IFAIL

REAL (KIND=nag_wp) P(N1), PE(N1), E(N), SOLN(N,M1), W(N,SDW)

EXTERNAL FCN, BC, RANGE

3 Description

D02HBF solves a two-point boundary value problem by determining the unknown parameters
p1; p2; . . . ; pn1

of the problem. These parameters may be, but need not be, boundary values; they may
include eigenvalue parameters in the coefficients of the differential equations, length of the range of
integration, etc. The notation and methods used are similar to those of D02HAF and you are advised to
study this first. (The parameters p1; p2; . . . ; pn1

correspond precisely to the unknown boundary conditions
in D02HAF.) It is assumed that we have a system of n first-order ordinary differential equations of the
form:

dyi
dx
¼ fi x; y1; y2; . . . ; ynð Þ, i ¼ 1; 2; . . . ; n,

and that the derivatives fi are evaluated by FCN. The system, including the boundary conditions given by
BC and the range of integration given by RANGE, involves the n1 unknown parameters p1; p2; . . . ; pn1

which are to be determined, and for which initial estimates must be supplied. The number of unknown
parameters n1 must not exceed the number of equations n. If n1 < n, we assume that n� n1ð Þ equations
of the system are not involved in the matching process. These are usually referred to as ‘driving
equations’; they are independent of the parameters and of the solutions of the other n1 equations. In
numbering the equations for FCN, the driving equations must be put first.

The estimated values of the parameters are corrected by a form of Newton iteration. The Newton
correction on each iteration is calculated using a Jacobian matrix whose i; jð Þth element depends on the
derivative of the ith component of the solution, yi, with respect to the jth parameter, pj. This matrix is
calculated by a simple numerical differentiation technique which requires n1 evaluations of the differential
system.

If the parameter IFAIL is set appropriately, the routine automatically prints messages to inform you of the
flow of the calculation. These messages are discussed in detail in Section 8.

D02HBF is a simplified version of D02SAF which is described in detail in Gladwell (1979).

4 References

Gladwell I (1979) The development of the boundary value codes in the ordinary differential equations
chapter of the NAG Library Codes for Boundary Value Problems in Ordinary Differential Equations.

D02 – Ordinary Differential Equations D02HBF

Mark 24 D02HBF.1

Lecture Notes in Computer Science (eds B Childs, M Scott, J W Daniel, E Denman and P Nelson) 76
Springer–Verlag

5 Parameters

You are strongly recommended to read Sections 3 and 8 in conjunction with this section.

1: PðN1Þ – REAL (KIND=nag_wp) array Input/Output

On entry: an estimate for the ith parameter, pi, for i ¼ 1; 2; . . . ; n1.

On exit: the corrected value for the ith parameter, unless an error has occurred, when it contains the
last calculated value of the parameter.

2: N1 – INTEGER Input

On entry: n1, the number of parameters.

Constraint: 1 � N1 � N.

3: PEðN1Þ – REAL (KIND=nag_wp) array Input

On entry: the elements of PE must be given small positive values. The element PEðiÞ is used

(i) in the convergence test on the ith parameter in the Newton iteration, and

(ii) in perturbing the ith parameter when approximating the derivatives of the components of the
solution with respect to this parameter for use in the Newton iteration.

The elements PEðiÞ should not be chosen too small. They should usually be several orders of
magnitude larger than machine precision.

Constraint: PEðiÞ > 0:0, for i ¼ 1; 2; . . . ;N1.

4: EðNÞ – REAL (KIND=nag_wp) array Input

On entry: the elements of E must be given positive values. The element EðiÞ is used in the bound
on the local error in the ith component of the solution yi during integration.

The elements EðiÞ should not be chosen too small. They should usually be several orders of
magnitude larger than machine precision.

Constraint: EðiÞ > 0:0, for i ¼ 1; 2; . . . ;N.

5: N – INTEGER Input

On entry: n, the total number of differential equations.

Constraint: N � 2.

6: SOLNðN,M1Þ – REAL (KIND=nag_wp) array Output

On exit: the solution when M1 > 1.

7: M1 – INTEGER Input

On entry: a value which controls exit values.

M1 ¼ 1
The final solution is not calculated.

M1 > 1
The final values of the solution at interval (length of range)/ M1� 1ð Þ are calculated and
stored sequentially in the array SOLN starting with the values of the solutions evaluated at
the first end point (see RANGE) stored in the first column of SOLN.

Constraint: M1 � 1.

D02HBF NAG Library Manual

D02HBF.2 Mark 24

8: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i), for i ¼ 1; 2; . . . ; n, at a general point x.

The specification of FCN is:

SUBROUTINE FCN (X, Y, F, P)

REAL (KIND=nag_wp) X, Y(*), F(*), P(*)

In the description of the parameters of D02HBF below, n and n1 denote the numerical values of
N and N1 in the call of D02HBF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the argument.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the argument.

3: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ; n. The fi may depend upon the parameters pj,
for j ¼ 1; 2; . . . ; n1. If there are any driving equations (see Section 3) then these must be
numbered first in the ordering of the components of F in FCN.

4: Pð�Þ – REAL (KIND=nag_wp) array Input

On entry: the current estimate of the parameter pi, for i ¼ 1; 2; . . . ; n1.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02HBF is called. Parameters denoted as Input must not be changed by
this procedure.

9: BC – SUBROUTINE, supplied by the user. External Procedure

BC must place in G1 and G2 the boundary conditions at a and b respectively (see RANGE).

The specification of BC is:

SUBROUTINE BC (G1, G2, P)

REAL (KIND=nag_wp) G1(*), G2(*), P(*)

In the description of the parameters of D02HBF below, n and n1 denote the numerical values of
N and N1 in the call of D02HBF.

1: G1ð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of yi að Þ, (where this may be a known value or a function of the
parameters pj, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n1).

2: G2ð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of yi bð Þ, for i ¼ 1; 2; . . . ; n, (where these may be known values or
functions of the parameters pj, for j ¼ 1; 2; . . . ; n1). If n > n1, so that there are some
driving equations, then the first n� n1 values of G2 need not be set since they are never
used.

3: Pð�Þ – REAL (KIND=nag_wp) array Input

On entry: an estimate of the parameter pi, for i ¼ 1; 2; . . . ; n1.

D02 – Ordinary Differential Equations D02HBF

Mark 24 D02HBF.3

BC must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program
from which D02HBF is called. Parameters denoted as Input must not be changed by this
procedure.

10: RANGE – SUBROUTINE, supplied by the user. External Procedure

RANGE must evaluate the boundary points a and b, each of which may depend on the parameters
p1; p2; . . . ; pn1

. The integrations in the shooting method are always from a to b.

The specification of RANGE is:

SUBROUTINE RANGE (A, B, P)

REAL (KIND=nag_wp) A, B, P(*)

In the description of the parameters of D02HBF below, n1 denotes the actual value of N1 in the
call of D02HBF.

1: A – REAL (KIND=nag_wp) Output

On exit: a, one of the boundary points.

2: B – REAL (KIND=nag_wp) Output

On exit: the second boundary point, b. Note that B > A forces the direction of integration
to be that of increasing x. If A and B are interchanged the direction of integration is
reversed.

3: Pð�Þ – REAL (KIND=nag_wp) array Input

On entry: the current estimate of the ith parameter, pi, for i ¼ 1; 2; . . . ; n1.

RANGE must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02HBF is called. Parameters denoted as Input must not be changed by
this procedure.

11: WðN,SDWÞ – REAL (KIND=nag_wp) array Output

Used mainly for workspace.

On exit: with IFAIL ¼ 2, 3, 4 or 5 (see Section 6), Wði; 1Þ, for i ¼ 1; 2; . . . ; n, contains the solution
at the point x when the error occurred. Wð1; 2Þ contains x.

12: SDW – INTEGER Input

On entry: the second dimension of the array W as declared in the (sub)program from which
D02HBF is called.

Constraint: SDW � 3Nþ 14þmax 11;Nð Þ.

13: IFAIL – INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Section 3.3 in the Essential Introduction).

On entry: IFAIL must be set to a value with the decimal expansion cba, where each of the decimal
digits c, b and a must have a value of 0 or 1.

a ¼ 0 specifies hard failure, otherwise soft failure;

b ¼ 0 suppresses error messages, otherwise error messages will be printed (see Section 6);

c ¼ 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

D02HBF NAG Library Manual

D02HBF.4 Mark 24

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

One or more of the parameters N, N1, M1, SDW, E or PE is incorrectly set.

IFAIL ¼ 2

The step length for the integration became too short whilst calculating the residual (see Section 8).

IFAIL ¼ 3

No initial step length could be chosen for the integration whilst calculating the residual.

Note: IFAIL ¼ 2 or 3 can occur due to choosing too small a value for E or due to choosing the wrong
direction of integration. Try varying E and interchanging a and b. These error exits can also occur for
very poor initial choices of the parameters in the array P and, in extreme cases, because D02HBF cannot
be used to solve the problem posed.

IFAIL ¼ 4

As for IFAIL ¼ 2 but the error occurred when calculating the Jacobian.

IFAIL ¼ 5

As for IFAIL ¼ 3 but the error occurred when calculating the Jacobian.

IFAIL ¼ 6

The calculated Jacobian has an insignificant column. This can occur because a parameter pi is
incorrectly entered when posing the problem.

Note: IFAIL ¼ 4, 5 or 6 usually indicate a badly scaled problem. You may vary the size of PE.
Otherwise the use of the more general D02SAF which affords more control over the calculations is
advised.

IFAIL ¼ 7

The linear algebra routine used (F08KBF (DGESVD)) has failed. This error exit should not occur
and can be avoided by changing the initial estimates pi.

IFAIL ¼ 8

The Newton iteration has failed to converge. This can indicate a poor initial choice of parameters pi
or a very difficult problem. Consider varying the elements PEðiÞ if the residuals are small in the
monitoring output. If the residuals are large, try varying the initial parameters pi.

IFAIL ¼ 9
IFAIL ¼ 10
IFAIL ¼ 11
IFAIL ¼ 12
IFAIL ¼ 13

Indicates that a serious error has occurred in an internal call. Check all array subscripts and
subroutine parameter lists in the call to D02HBF. Seek expert help.

D02 – Ordinary Differential Equations D02HBF

Mark 24 D02HBF.5

7 Accuracy

If the process converges, the accuracy to which the unknown parameters are determined is usually close to
that specified by you; the solution, if requested, may be determined to a required accuracy by varying E.

8 Further Comments

The time taken by D02HBF depends on the complexity of the system, and on the number of iterations
required. In practice, integration of the differential equations is by far the most costly process involved.

Wherever they occur in the routine, the error parameters contained in the arrays E and PE are used in
‘mixed’ form; that is EðiÞ always occurs in expressions of the form

EðiÞ � 1þ yij jð Þ
and PEðiÞ always occurs in expressions of the form

PEðiÞ � 1þ pij jð Þ.
Though not ideal for every application, it is expected that this mixture of absolute and relative error testing
will be adequate for most purposes.

You may determine a suitable direction of integration a to b and suitable values for EðiÞ by integrations
with D02PEF. The best direction of integration is usually the direction of decreasing solutions. You are
strongly recommended to set IFAIL to obtain self-explanatory error messages, and also monitoring
information about the course of the computation. You may select the channel numbers on which this
output is to appear by calls of X04AAF (for error messages) or X04ABF (for monitoring information) –
see Section 9 for an example. Otherwise the default channel numbers will be used, as specified in the
Users’ Note. The monitoring information produced at each iteration includes the current parameter values,
the residuals and 2-norms: a basic norm and a current norm. At each iteration the aim is to find parameter
values which make the current norm less than the basic norm. Both these norms should tend to zero as
should the residuals. (They would all be zero if the exact parameters were used as input.) For more
details, in particular about the other monitoring information printed, you are advised to consult the
specification of D02SAF, and especially the description of the parameter MONIT there.

The computing time for integrating the differential equations can sometimes depend critically on the
quality of the initial estimates for the parameters pi. If it seems that too much computing time is required
and, in particular, if the values of the residuals printed by the monitoring routine are much larger than the
expected values of the solution at b, then the coding of FCN, BC and RANGE should be checked for
errors. If no errors can be found, an independent attempt should be made to improve the initial estimates
for pi.

The subroutine can be used to solve a very wide range of problems, for example:

(a) eigenvalue problems, including problems where the eigenvalue occurs in the boundary conditions;

(b) problems where the differential equations depend on some parameters which are to be determined so
as to satisfy certain boundary conditions (see Example 2 in Section 9);

(c) problems where one of the end points of the range of integration is to be determined as the point
where a variable yi takes a particular value (see Example 2 in Section 9);

(d) singular problems and problems on infinite ranges of integration where the values of the solution at a
or b or both are determined by a power series or an asymptotic expansion (or a more complicated
expression) and where some of the coefficients in the expression are to be determined (see Example 1
in Section 9); and

(e) differential equations with certain terms defined by other independent (driving) differential equations.

9 Example

For this routine two examples are presented. There is a single example program for D02HBF, with a main
program and the code to solve the two example problems given in Example 1 (EX1) and Example 2
(EX2).

D02HBF NAG Library Manual

D02HBF.6 Mark 24

Example 1 (EX1)

This example finds the solution of the differential equation

y00 ¼ y3 � y0
� �

=2x

on the range 0 � x � 16, with boundary conditions y 0ð Þ ¼ 0:1 and y 16ð Þ ¼ 1=6. We cannot use the
differential equation at x ¼ 0 because it is singular, so we take a truncated power series expansion

y xð Þ ¼ 1=10þ p1 �
ffiffiffi
x
p

=10þ x=100

near the origin where p1 is one of the parameters to be determined. We choose the interval as 0:1; 16½ � and
setting p2 ¼ y0 16ð Þ, we can determine all the boundary conditions. We take X1 ¼ 16. We write y ¼ Yð1Þ,
y0 ¼ Yð2Þ, and estimate PARAM 1ð Þ ¼ 0:2, PARAM 2ð Þ ¼ 0:0. Note the call to X04ABF before the call
to D02HBF.

Example 2 (EX2)

This example finds the gravitational constant p1 and the range p2 over which a projectile must be fired to
hit the target with a given velocity.

The differential equations are

y0 ¼ tan�

v0 ¼
� p1 sin�þ 0:00002v2� �

v cos�

�0 ¼ �p1

v2

on the range 0 < x < p2, with boundary conditions

y ¼ 0, v ¼ 500, � ¼ 0:5 at x ¼ 0,
y ¼ 0, v ¼ 450, � ¼ p3 at x ¼ p2.

We write y ¼ Yð1Þ, v ¼ Yð2Þ, � ¼ Yð3Þ. We estimate p1 ¼ PARAM 1ð Þ ¼ 32, p2 ¼ PARAM 2ð Þ ¼ 6000
and p3 ¼ PARAM 3ð Þ ¼ 0:54 (though this last estimate is not important).

9.1 Program Text

! D02HBF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

Module d02hbfe_mod

! Data for D02HBF example programs

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: iset = 1, nin = 5, nout = 6

Contains
Subroutine fcn1(x,y,f,p)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: p(*), y(*)

! .. Executable Statements ..
f(1) = y(2)
f(2) = (y(1)**3-y(2))/(2.0E0_nag_wp*x)
Return

End Subroutine fcn1
Subroutine range1(a,b,p)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: a, b

D02 – Ordinary Differential Equations D02HBF

Mark 24 D02HBF.7

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: p(*)

! .. Executable Statements ..
a = 0.1E0_nag_wp
b = 16.0E0_nag_wp
Return

End Subroutine range1
Subroutine bc1(g1,g2,p)

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g1(*), g2(*)
Real (Kind=nag_wp), Intent (In) :: p(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: z

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
z = 0.1E0_nag_wp
g1(1) = 0.1E0_nag_wp + p(1)*sqrt(z)*0.1E0_nag_wp + 0.01E0_nag_wp*z
g1(2) = p(1)*0.05E0_nag_wp/sqrt(z) + 0.01E0_nag_wp
g2(1) = 1.0E0_nag_wp/6.0E0_nag_wp
g2(2) = p(2)
Return

End Subroutine bc1
Subroutine fcn2(x,y,f,p)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: p(*), y(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos, tan

! .. Executable Statements ..
f(1) = tan(y(3))
f(2) = -p(1)*tan(y(3))/y(2) - 0.00002E0_nag_wp*y(2)/cos(y(3))
f(3) = -p(1)/y(2)**2
Return

End Subroutine fcn2
Subroutine range2(a,b,p)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: a, b

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: p(*)

! .. Executable Statements ..
a = 0.0E0_nag_wp
b = p(2)
Return

End Subroutine range2
Subroutine bc2(g1,g2,p)

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: g1(*), g2(*)
Real (Kind=nag_wp), Intent (In) :: p(*)

! .. Executable Statements ..
g1(1) = 0.0E0_nag_wp
g1(2) = 500.0E0_nag_wp
g1(3) = 0.5E0_nag_wp
g2(1) = 0.0E0_nag_wp
g2(2) = 450.0E0_nag_wp
g2(3) = p(3)
Return

End Subroutine bc2
End Module d02hbfe_mod
Program d02hbfe

! D02HBF Example Main Program

! .. Use Statements ..
Use d02hbfe_mod, Only: nout

D02HBF NAG Library Manual

D02HBF.8 Mark 24

! .. Implicit None Statement ..
Implicit None

! .. Executable Statements ..
Write (nout,*) ’D02HBF Example Program Results’

Call ex1

Call ex2

Contains
Subroutine ex1

! .. Use Statements ..
Use nag_library, Only: d02hbf, nag_wp, x04abf
Use d02hbfe_mod, Only: bc1, fcn1, iset, nin, range1

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, x, x1, xh
Integer :: i, ifail, m1, n, n1, outchn, sdw

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: e(:), p(:), pe(:), soln(:,:), &

w(:,:)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..
! Skip heading in data file

Read (nin,*)
! m1: controls exit values, n: number of differential equations,
! n1: number of parameters.

Read (nin,*) m1, n, n1
sdw = 3*n + 14 + 11
Allocate (e(n),p(n1),pe(n1),soln(n,m1),w(n,sdw))
Write (nout,*)
outchn = nout
Write (nout,*)
Call x04abf(iset,outchn)

! p: estimates for the parameters p, e: bound on the local error.
Read (nin,*) p(1:n1)
Read (nin,*) pe(1:n1)
Read (nin,*) e(1:n)

Write (nout,*) ’Case 1’
Write (nout,*)

! ifail: behaviour on error exit
! =1 for quiet-soft exit
! * Set ifail to 111 to obtain monitoring information *

ifail = 1
Call d02hbf(p,n1,pe,e,n,soln,m1,fcn1,bc1,range1,w,sdw,ifail)

If (ifail==0) Then
Write (nout,*) ’Final parameters’
Write (nout,99999)(p(i),i=1,n1)
Write (nout,*)
Write (nout,*) ’Final solution’
Write (nout,*) ’X-value Components of solution’
Call range1(x,x1,p)
h = (x1-x)/real(m1-1,kind=nag_wp)
xh = x
Do i = 1, m1

Write (nout,99998) xh, soln(1:n,i)
xh = xh + h

End Do
Else

Write (nout,99996) ifail
If (ifail>1 .And. ifail<=5) Then

Write (nout,99997) w(1,2), (w(i,1),i=1,n)
End If

End If

Return

99999 Format (1X,1P,3E15.3)

D02 – Ordinary Differential Equations D02HBF

Mark 24 D02HBF.9

99998 Format (1X,F7.2,2F13.4)
99997 Format (/1X,’W(1,2) = ’,F9.4,’ W(.,1) = ’,10E10.3)
99996 Format (1X/1X,’ ** D02HBF returned with IFAIL = ’,I5)

End Subroutine ex1
Subroutine ex2

! .. Use Statements ..
Use nag_library, Only: d02hbf, nag_wp, x04abf
Use d02hbfe_mod, Only: bc2, fcn2, iset, nin, range2

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, x, x1, xh
Integer :: i, ifail, m1, n, n1, outchn, sdw

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: e(:), p(:), pe(:), soln(:,:), &

w(:,:)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..

Read (nin,*)
! m1: controls exit values, n: number of differential equations,
! n1: number of parameters.

Read (nin,*) m1, n, n1
sdw = 3*n + 14 + 11
Allocate (e(n),p(n1),pe(n1),soln(n,m1),w(n,sdw))
outchn = nout
Call x04abf(iset,outchn)

! p: estimates for the parameters p, e: bound on the local error.
Read (nin,*) p(1:n1)
Read (nin,*) pe(1:n1)
Read (nin,*) e(1:n)

Write (nout,*)
Write (nout,*)
Write (nout,*) ’Case 2’
Write (nout,*)

! ifail: behaviour on error exit
! =1 for quiet-soft exit
! * Set ifail to 111 to obtain monitoring information *

ifail = 1
Call d02hbf(p,n1,pe,e,n,soln,m1,fcn2,bc2,range2,w,sdw,ifail)

If (ifail==0) Then
Write (nout,*) ’Final parameters’
Write (nout,99999)(p(i),i=1,n1)
Write (nout,*)
Write (nout,*) ’Final solution’
Write (nout,*) ’X-value Components of solution’
Call range2(x,x1,p)
h = (x1-x)/real(m1-1,kind=nag_wp)
xh = x
Do i = 1, m1

Write (nout,99998) xh, soln(1:n,i)
xh = xh + h

End Do
Else

Write (nout,99996) ifail
If (ifail>1 .And. ifail<=5) Then

Write (nout,99997) w(1,2), (w(i,1),i=1,n)
End If

End If

Return

99999 Format (1X,1P,3E15.3)
99998 Format (1X,F7.0,2F13.1,F13.3)
99997 Format (/1X,’W(1,2) = ’,F9.4,’ W(.,1) = ’,10E10.3)
99996 Format (1X/1X,’ ** D02HBF returned with IFAIL = ’,I5)

End Subroutine ex2
End Program d02hbfe

D02HBF NAG Library Manual

D02HBF.10 Mark 24

9.2 Program Data

D02HBF Example Program Data
6 2 2 : m1, n, n1
0.2 0.0 : p
1.0E-5 1.0E-3 : pe
1.0E-4 1.0E-4 : e

6 3 3 : m1, n, n1
32.0 6000.0 0.54 : p
1.0E-5 1.0E-4 1.0E-4 : pe
1.0E-2 1.0E-2 1.0E-2 : e

9.3 Program Results

D02HBF Example Program Results

Case 1

Final parameters
4.629E-02 3.494E-03

Final solution
X-value Components of solution

0.10 0.1025 0.0173
3.28 0.1217 0.0042
6.46 0.1338 0.0036
9.64 0.1449 0.0034

12.82 0.1557 0.0034
16.00 0.1667 0.0035

Case 2

Final parameters
3.239E+01 5.962E+03 -5.353E-01

Final solution
X-value Components of solution

0. 0.0 500.0 0.500
1192. 529.6 451.6 0.328
2385. 807.2 420.3 0.123
3577. 820.4 409.4 -0.103
4769. 556.1 420.0 -0.330
5962. -0.0 450.0 -0.535

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 2 4 6 8 10 12 14 16
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

So
lu

ti
on

D
er

iv
at

iv
e

x

Example Program 1
Parameterised Two-point Boundary-value Problem

using Initial Value Techniques and Newton Iteration

solution y(x)

derivative y’(x) param(2)

D02 – Ordinary Differential Equations D02HBF

Mark 24 D02HBF.11

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1000 2000 3000 4000 5000 6000
-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

H
ei

gh
t

an
d

V
el

oc
it

y

A
ng

le

x

Example Program 2
Find Gravitational Constant and Range Given Projectile Terminal Velocity

height

velocity

angle

D02HBF NAG Library Manual

D02HBF.12 (last) Mark 24

	D02HBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	P
	N1
	PE
	E
	N
	SOLN
	M1
	FCN
	X in subprogram FCN
	Y in subprogram FCN
	F in subprogram FCN
	P in subprogram FCN

	BC
	G1 in subprogram BC
	G2 in subprogram BC
	P in subprogram BC

	RANGE
	A in subprogram RANGE
	B in subprogram RANGE
	P in subprogram RANGE

	W
	SDW
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

