NAG Library Chapter Contents ## **D02** – Ordinary Differential Equations D02 Chapter Introduction D02M-N Sub-chapter Introduction | Routine
Name | Mark of Introduction | Purpose | |-----------------|----------------------|---| | D02AGF | 2 | nagf_ode_bvp_shoot_genpar_intern
Ordinary differential equations, boundary value problem, shooting and
matching technique, allowing interior matching point, general parameters to
be determined | | D02BGF | 7 | nagf_ode_ivp_rkm_val_simple
Ordinary differential equations, initial value problem, Runge-Kutta-Merson
method, until a component attains given value (simple driver) | | D02BHF | 7 | nagf_ode_ivp_rkm_zero_simple
Ordinary differential equations, initial value problem, Runge–Kutta–Merson
method, until function of solution is zero (simple driver) | | D02BJF | 18 | nagf_ode_ivp_rk_zero_simple
Ordinary differential equations, initial value problem, Runge–Kutta method,
until function of solution is zero, integration over range with intermediate
output (simple driver) | | D02CJF | 13 | nagf_ode_ivp_adams_zero_simple
Ordinary differential equations, initial value problem, Adams' method, until
function of solution is zero, intermediate output (simple driver) | | D02EJF | 12 | nagf_ode_ivp_bdf_zero_simple
Ordinary differential equations, stiff initial value problem, backward
differentiation formulae method, until function of solution is zero,
intermediate output (simple driver) | | D02GAF | 8 | nagf_ode_bvp_fd_nonlin_fixedbc
Ordinary differential equations, boundary value problem, finite difference
technique with deferred correction, simple nonlinear problem | | D02GBF | 8 | nagf_ode_bvp_fd_lin_gen
Ordinary differential equations, boundary value problem, finite difference
technique with deferred correction, general linear problem | | D02HAF | 8 | nagf_ode_bvp_shoot_bval
Ordinary differential equations, boundary value problem, shooting and
matching, boundary values to be determined | | D02HBF | 8 | nagf_ode_bvp_shoot_genpar
Ordinary differential equations, boundary value problem, shooting and
matching, general parameters to be determined | | D02JAF | 8 | nagf_ode_bvp_coll_nth Ordinary differential equations, boundary value problem, collocation and least squares, single n th-order linear equation | | D02JBF | 8 | nagf_ode_bvp_coll_sys
Ordinary differential equations, boundary value problem, collocation and least
squares, system of first-order linear equations | | D02KAF | 7 | nagf_ode_sl2_reg_finite
Second-order Sturm-Liouville problem, regular system, finite range,
eigenvalue only | |--------|----|--| | D02KDF | 7 | nagf_ode_sl2_breaks_vals
Second-order Sturm-Liouville problem, regular/singular system, finite/infinite
range, eigenvalue only, user-specified break-points | | D02KEF | 8 | nagf_ode_sl2_breaks_funs
Second-order Sturm-Liouville problem, regular/singular system, finite/infinite
range, eigenvalue and eigenfunction, user-specified break-points | | D02LAF | 13 | nagf_ode_ivp_2nd_rkn
Second-order ordinary differential equations, initial value problem, Runge–
Kutta–Nystrom method | | D02LXF | 13 | nagf_ode_ivp_2nd_rkn_setup
Second-order ordinary differential equations, initial value problem, setup for
D02LAF | | D02LYF | 13 | nagf_ode_ivp_2nd_rkn_diag
Second-order ordinary differential equations, initial value problem, diagnostics
for D02LAF | | D02LZF | 13 | nagf_ode_ivp_2nd_rkn_interp
Second-order ordinary differential equations, initial value problem,
interpolation for D02LAF | | D02MCF | 22 | nagf_ode_dae_dassl_cont
Implicit ordinary differential equations/DAEs, initial value problem, DASSL
method continuation for D02NEF | | D02MVF | 14 | nagf_ode_ivp_stiff_dassl
Ordinary differential equations, initial value problem, DASSL method, setup
for D02M–N routines | | D02MWF | 22 | nagf_ode_dae_dassl_setup
Implicit ordinary differential equations/DAEs, initial value problem, setup for D02NEF | | D02MZF | 14 | nagf_ode_ivp_stiff_interp
Ordinary differential equations, initial value problem, interpolation for
D02M–N routines (all integration methods), natural interpolant | | D02NBF | 12 | nagf_ode_ivp_stiff_exp_fulljac
Explicit ordinary differential equations, stiff initial value problem, full
Jacobian (comprehensive) | | D02NCF | 12 | nagf_ode_ivp_stiff_exp_bandjac
Explicit ordinary differential equations, stiff initial value problem, banded
Jacobian (comprehensive) | | D02NDF | 12 | nagf_ode_ivp_stiff_exp_sparjac
Explicit ordinary differential equations, stiff initial value problem, sparse
Jacobian (comprehensive) | | D02NEF | 22 | nagf_ode_dae_dassl_gen
Implicit ordinary differential equations/DAEs, initial value problem, DASSL
method integrator | | D02NGF | 12 | nagf_ode_ivp_stiff_imp_fulljac
Implicit/algebraic ordinary differential equations, stiff initial value problem,
full Jacobian (comprehensive) | | D02NHF | 12 | nagf_ode_ivp_stiff_imp_bandjac
Implicit/algebraic ordinary differential equations, stiff initial value problem,
banded Jacobian (comprehensive) | | D02NJF | 12 | nagf_ode_ivp_stiff_imp_sparjac
Implicit/algebraic ordinary differential equations, stiff initial value problem,
sparse Jacobian (comprehensive) | |--------|----|---| | D02NMF | 12 | nagf_ode_ivp_stiff_exp_revcom
Explicit ordinary differential equations, stiff initial value problem (reverse
communication, comprehensive) | | D02NNF | 12 | nagf_ode_ivp_stiff_imp_revcom
Implicit/algebraic ordinary differential equations, stiff initial value problem
(reverse communication, comprehensive) | | D02NPF | 22 | nagf_ode_dae_dassl_linalg
Implicit ordinary differential equations/DAEs, initial value problem linear
algebra setup routine for D02NEF | | D02NRF | 12 | nagf_ode_ivp_stiff_sparjac_enq
Ordinary differential equations, initial value problem, for use with D02M-N
routines, sparse Jacobian, enquiry routine | | D02NSF | 12 | nagf_ode_ivp_stiff_fulljac_setup
Ordinary differential equations, initial value problem, for use with D02M-N
routines, full Jacobian, linear algebra set up | | D02NTF | 12 | nagf_ode_ivp_stiff_bandjac_setup
Ordinary differential equations, initial value problem, for use with D02M-N
routines, banded Jacobian, linear algebra set up | | D02NUF | 12 | nagf_ode_ivp_stiff_sparjac_setup
Ordinary differential equations, initial value problem, for use with D02M-N
routines, sparse Jacobian, linear algebra set up | | D02NVF | 12 | nagf_ode_ivp_stiff_bdf
Ordinary differential equations, initial value problem, backward differentiation
formulae method, setup for D02M–N routines | | D02NWF | 12 | nagf_ode_ivp_stiff_blend
Ordinary differential equations, initial value problem, Blend method, setup for
D02M-N routines | | D02NXF | 12 | nagf_ode_ivp_stiff_sparjac_diag
Ordinary differential equations, initial value problem, sparse Jacobian, linear
algebra diagnostics, for use with D02M-N routines | | D02NYF | 12 | nagf_ode_ivp_stiff_integ_diag
Ordinary differential equations, initial value problem, integrator diagnostics,
for use with D02M-N routines | | D02NZF | 12 | nagf_ode_ivp_stiff_contin
Ordinary differential equations, initial value problem, setup for continuation
calls to integrator, for use with D02M-N routines | | D02PCF | 16 | nagf_ode_withdraw_ivp_rk_range Ordinary differential equations, initial value problem, Runge-Kutta method, integration over range with output Note: this routine is scheduled for withdrawal at Mark 26, see Advice on Replacement Calls for Withdrawn/Superseded Routines for further information. | | D02PDF | 16 | nagf_ode_withdraw_ivp_rk_onestep Ordinary differential equations, initial value problem, Runge-Kutta method, integration over one step Note: this routine is scheduled for withdrawal at Mark 26, see Advice on Replacement Calls for Withdrawn/Superseded Routines for further information. | | D02PEF | 24 | nagf_ode_ivp_rkts_range Ordinary differential equations, initial value problem, Runge–Kutta method, integration over range with output | |--------|----|--| | D02PFF | 24 | nagf_ode_ivp_rkts_onestep
Ordinary differential equations, initial value problem, Runge-Kutta method,
integration over one step | | D02PQF | 24 | nagf_ode_ivp_rkts_setup
Ordinary differential equations, initial value problem, setup for D02PEF and D02PFF | | D02PRF | 24 | nagf_ode_ivp_rkts_reset_tend
Ordinary differential equations, initial value problem, resets end of range for
D02PFF | | D02PSF | 24 | nagf_ode_ivp_rkts_interp
Ordinary differential equations, initial value problem, interpolation for
D02PFF | | D02PTF | 24 | nagf_ode_ivp_rkts_diag
Ordinary differential equations, initial value problem, integration diagnostics
for D02PEF and D02PFF | | D02PUF | 24 | nagf_ode_ivp_rkts_errass
Ordinary differential equations, initial value problem, error assessment
diagnostics for D02PEF and D02PFF | | D02PVF | 16 | nagf_ode_withdraw_ivp_rk_setup Ordinary differential equations, initial value problem, setup for D02PCF and D02PDF Note: this routine is scheduled for withdrawal at Mark 26, see Advice on Replacement Calls for Withdrawn/Superseded Routines for further information. | | D02PWF | 16 | nagf_ode_withdraw_ivp_rk_reset_tend Ordinary differential equations, initial value problem, resets end of range for D02PDF Note: this routine is scheduled for withdrawal at Mark 26, see Advice on Replacement Calls for Withdrawn/Superseded Routines for further information. | | D02PXF | 16 | nagf_ode_withdraw_ivp_rk_interp Ordinary differential equations, initial value problem, interpolation for D02PDF Note: this routine is scheduled for withdrawal at Mark 26, see Advice on Replacement Calls for Withdrawn/Superseded Routines for further information. | | D02PYF | 16 | nagf_ode_withdraw_ivp_rk_diag Ordinary differential equations, initial value problem, integration diagnostics for D02PCF and D02PDF Note: this routine is scheduled for withdrawal at Mark 26, see Advice on Replacement Calls for Withdrawn/Superseded Routines for further information. | | D02PZF | 16 | nagf_ode_withdraw_ivp_rk_errass Ordinary differential equations, initial value problem, error assessment diagnostics for D02PCF and D02PDF Note: this routine is scheduled for withdrawal at Mark 26, see Advice on Replacement Calls for Withdrawn/Superseded Routines for further information. | | D02QFF | 13 | nagf_ode_ivp_adams_roots
Ordinary differential equations, initial value problem, Adams' method with
root-finding (direct communication, comprehensive) | |--------|----|--| | D02QGF | 13 | nagf_ode_ivp_adams_roots_revcom
Ordinary differential equations, initial value problem, Adams' method with
root-finding (reverse communication, comprehensive) | | D02QWF | 13 | nagf_ode_ivp_adams_setup
Ordinary differential equations, initial value problem, setup for D02QFF and D02QGF | | D02QXF | 13 | nagf_ode_ivp_adams_diag
Ordinary differential equations, initial value problem, diagnostics for D02QFF
and D02QGF | | D02QYF | 13 | nagf_ode_ivp_adams_rootdiag
Ordinary differential equations, initial value problem, root-finding diagnostics
for D02QFF and D02QGF | | D02QZF | 13 | nagf_ode_ivp_adams_interp
Ordinary differential equations, initial value problem, interpolation for
D02QFF or D02QGF | | D02RAF | 8 | nagf_ode_bvp_fd_nonlin_gen
Ordinary differential equations, general nonlinear boundary value problem,
finite difference technique with deferred correction, continuation facility | | D02SAF | 8 | nagf_ode_bvp_shoot_genpar_algeq
Ordinary differential equations, boundary value problem, shooting and
matching technique, subject to extra algebraic equations, general parameters
to be determined | | D02TGF | 8 | nagf_ode_bvp_coll_nth_comp
nth-order linear ordinary differential equations, boundary value problem,
collocation and least squares | | D02TKF | 17 | nagf_ode_bvp_coll_nlin
Ordinary differential equations, general nonlinear boundary value problem,
collocation technique | | D02TVF | 17 | nagf_ode_bvp_coll_nlin_setup
Ordinary differential equations, general nonlinear boundary value problem,
setup for D02TKF | | D02TXF | 17 | nagf_ode_bvp_coll_nlin_contin
Ordinary differential equations, general nonlinear boundary value problem,
continuation facility for D02TKF | | D02TYF | 17 | nagf_ode_bvp_coll_nlin_interp
Ordinary differential equations, general nonlinear boundary value problem,
interpolation for D02TKF | | D02TZF | 17 | nagf_ode_bvp_coll_nlin_diag
Ordinary differential equations, general nonlinear boundary value problem,
diagnostics for D02TKF | | D02UAF | 23 | nagf_ode_bvp_ps_lin_coeffs
Coefficients of Chebyshev interpolating polynomial from function values on
Chebyshev grid | | D02UBF | 23 | nagf_ode_bvp_ps_lin_cgl_vals
Function or low-order-derivative values on Chebyshev grid from coefficients
of Chebyshev interpolating polynomial | | D02UCF | 23 | nagf_ode_bvp_ps_lin_cgl_grid
Chebyshev Gauss—Lobatto grid generation | | D02UDF | 23 | nagf_ode_bvp_ps_lin_cgl_deriv
Differentiate a function by the FFT using function values on Chebyshev grid | |--------|----|---| | D02UEF | 23 | nagf_ode_bvp_ps_lin_solve
Solve linear constant coefficient boundary value problem on Chebyshev grid,
Integral formulation | | D02UWF | 23 | nagf_ode_bvp_ps_lin_grid_vals
Interpolate a function from Chebyshev grid to uniform grid using barycentric
Lagrange interpolation | | D02UYF | 23 | nagf_ode_bvp_ps_lin_quad_weights
Clenshaw-Curtis quadrature weights for integration using computed
Chebyshev coefficients | | D02UZF | 23 | nagf_ode_bvp_ps_lin_cheb_eval
Chebyshev polynomial evaluation, $T_k(x)$ | | D02XJF | 12 | nagf_ode_ivp_stiff_nat_interp
Ordinary differential equations, initial value problem, interpolation for
D02M–N routines (BLEND and BDF methods only), natural interpolant | | D02XKF | 12 | nagf_ode_ivp_stiff_c1_interp
Ordinary differential equations, initial value problem, interpolation for
D02M-N routines, C^1 interpolant | | D02ZAF | 12 | nagf_ode_ivp_stiff_errest
Ordinary differential equations, initial value problem, weighted norm of local
error estimate for D02M–N routines |