
NAG Library Routine Document

D02BHF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02BHF integrates a system of first-order ordinary differential equations over an interval with suitable
initial conditions, using a Runge–Kutta–Merson method, until a user-specified function of the solution is
zero.

2 Specification

SUBROUTINE D02BHF (X, XEND, N, Y, TOL, IRELAB, HMAX, FCN, G, W, IFAIL)

INTEGER N, IRELAB, IFAIL

REAL (KIND=nag_wp) X, XEND, Y(N), TOL, HMAX, G, W(N,7)

EXTERNAL FCN, G

3 Description

D02BHF advances the solution of a system of ordinary differential equations

y0i ¼ fi x; y1; y2; . . . ; ynð Þ, i ¼ 1; 2; . . . ; n,

from x ¼ X towards x ¼ XEND using a Merson form of the Runge–Kutta method. The system is defined
by FCN, which evaluates fi in terms of x and y1; y2; . . . ; yn (see Section 5), and the values of
y1; y2; . . . ; yn must be given at x ¼ X.

As the integration proceeds, a check is made on the function g x; yð Þ specified by you, to determine an
interval where it changes sign. The position of this sign change is then determined accurately by
interpolating for the solution and its derivative. It is assumed that g x; yð Þ is a continuous function of the
variables, so that a solution of g x; yð Þ ¼ 0 can be determined by searching for a change in sign in g x; yð Þ.
The accuracy of the integration and, indirectly, of the determination of the position where g x; yð Þ ¼ 0, is
controlled by TOL.

For a description of Runge–Kutta methods and their practical implementation see Hall and Watt (1976).

4 References

Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

5 Parameters

1: X – REAL (KIND=nag_wp) Input/Output

On entry: must be set to the initial value of the independent variable x.

On exit: the point where g x; yð Þ ¼ 0:0 unless an error has occurred, when it contains the value of x
at the error. In particular, if g x; yð Þ 6¼ 0:0 anywhere on the range X to XEND, it will contain XEND
on exit.

2: XEND – REAL (KIND=nag_wp) Input

On entry: the final value of the independent variable x.

If XEND < X on entry, integration proceeds in a negative direction.
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3: N – INTEGER Input

On entry: n, the number of differential equations.

Constraint: N > 0.

4: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yn.

On exit: the computed values of the solution at the final point x ¼ X.

5: TOL – REAL (KIND=nag_wp) Input/Output

On entry: must be set to a positive tolerance for controlling the error in the integration and in the
determination of the position where g x; yð Þ ¼ 0:0.

D02BHF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution obtained in the integration. The
relation between changes in TOL and the error in the determination of the position where
g x; yð Þ ¼ 0:0 is less clear, but for TOL small enough the error should be approximately proportional
to TOL. However, the actual relation between TOL and the accuracy cannot be guaranteed. You
are strongly recommended to call D02BHF with more than one value for TOL and to compare the
results obtained to estimate their accuracy. In the absence of any prior knowledge you might

compare results obtained by calling D02BHF with TOL ¼ 10:0�p and TOL ¼ 10:0�p�1 if p correct
decimal digits in the solution are required.

Constraint: TOL > 0:0.

On exit: normally unchanged. However if the range from x ¼ X to the position where g x; yð Þ ¼ 0:0
(or to the final value of x if an error occurs) is so short that a small change in TOL is unlikely to
make any change in the computed solution, then TOL is returned with its sign changed. To check
results returned with TOL < 0:0, D02BHF should be called again with a positive value of TOL
whose magnitude is considerably smaller than that of the previous call.

6: IRELAB – INTEGER Input

On entry: determines the type of error control. At each step in the numerical solution an estimate of
the local error, est, is made. For the current step to be accepted the following condition must be
satisfied:

IRELAB ¼ 0
est � TOL�max 1:0; y1j j; y2j j; . . . ; ynj jf g;

IRELAB ¼ 1
est � TOL;

IRELAB ¼ 2
est � TOL�max �; y1j j; y2j j; . . . ; ynj jf g, where � is machine precision.

If the appropriate condition is not satisfied, the step size is reduced and the solution recomputed on
the current step.

If you wish to measure the error in the computed solution in terms of the number of correct decimal
places, then set IRELAB ¼ 1 on entry, whereas if the error requirement is in terms of the number of
correct significant digits, then set IRELAB ¼ 2. Where there is no preference in the choice of error
test, IRELAB ¼ 0 will result in a mixed error test. It should be borne in mind that the computed
solution will be used in evaluating g x; yð Þ.
Constraint: IRELAB ¼ 0, 1 or 2.

7: HMAX – REAL (KIND=nag_wp) Input

On entry: if HMAX ¼ 0:0, no special action is taken.

If HMAX 6¼ 0:0, a check is made for a change in sign of g x; yð Þ at steps not greater than HMAXj j.
This facility should be used if there is any chance of ‘missing’ the change in sign by checking too
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infrequently. For example, if two changes of sign of g x; yð Þ are expected within a distance h, say,
of each other, then a suitable value for HMAX might be HMAX ¼ h=2. If only one change of sign
in g x; yð Þ is expected on the range X to XEND, then the choice HMAX ¼ 0:0 is most appropriate.

8: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i) for given values of its arguments
x; y1; . . . ; yn.

The specification of FCN is:

SUBROUTINE FCN (X, Y, F)

REAL (KIND=nag_wp) X, Y(*), F(*)

In the description of the parameters of D02BHF below, n denotes the value of N in the call of
D02BHF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the argument.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the argument.

3: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ; n.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02BHF is called. Parameters denoted as Input must not be changed by
this procedure.

9: G – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

G must evaluate the function g x; yð Þ at a specified point.

The specification of G is:

FUNCTION G (X, Y)

REAL (KIND=nag_wp) G

REAL (KIND=nag_wp) X, Y(*)

In the description of the parameters of D02BHF below, n denotes the value of N in the call of
D02BHF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: the value of yi, for i ¼ 1; 2; . . . ; n.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program
from which D02BHF is called. Parameters denoted as Input must not be changed by this
procedure.
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10: WðN,7Þ – REAL (KIND=nag_wp) array Workspace

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOL � 0:0,
or N � 0,
or IRELAB 6¼ 0, 1 or 2.

IFAIL ¼ 2

With the given value of TOL, no further progress can be made across the integration range from the
current point x ¼ X, or dependence of the error on TOL would be lost if further progress across the
integration range were attempted (see Section 8 for a discussion of this error exit). The components
Yð1Þ;Yð2Þ; . . . ;YðnÞ contain the computed values of the solution at the current point x ¼ X. No
point at which g x; yð Þ changes sign has been located up to the point x ¼ X.

IFAIL ¼ 3

TOL is too small for D02BHF to take an initial step (see Section 8). X and Yð1Þ;Yð2Þ; . . . ;YðnÞ
retain their initial values.

IFAIL ¼ 4

At no point in the range X to XEND did the function g x; yð Þ change sign. It is assumed that
g x; yð Þ ¼ 0:0 has no solution.

IFAIL ¼ 5 (C05AZF)

A serious error has occurred in an internal call to the specified routine. Check all subroutine calls
and array dimensions. Seek expert help.

IFAIL ¼ 6

A serious error has occurred in an internal call to an integration routine. Check all subroutine calls
and array dimensions. Seek expert help.

IFAIL ¼ 7

A serious error has occurred in an internal call to an interpolation routine. Check all (sub)program
calls and array dimensions. Seek expert help.
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7 Accuracy

The accuracy depends on TOL, on the mathematical properties of the differential system, on the position
where g x; yð Þ ¼ 0:0 and on the method. It can be controlled by varying TOL but the approximate
proportionality of the error to TOL holds only for a restricted range of values of TOL. For TOL too large,
the underlying theory may break down and the result of varying TOL may be unpredictable. For TOL too
small, rounding error may affect the solution significantly and an error exit with IFAIL ¼ 2 or 3 is
possible.

The accuracy may also be restricted by the properties of g x; yð Þ. You should try to code G without
introducing any unnecessary cancellation errors.

8 Further Comments

The time taken by D02BHF depends on the complexity and mathematical properties of the system of
differential equations defined by FCN, the complexity of G, on the range, the position of the solution and
the tolerance. There is also an overhead of the form aþ b� n where a and b are machine-dependent
computing times.

For some problems it is possible that D02BHF will return IFAIL ¼ 4 because of inaccuracy of the
computed values Y, leading to inaccuracy in the computed values of g x; yð Þ used in the search for the
solution of g x; yð Þ ¼ 0:0. This difficulty can be overcome by reducing TOL sufficiently, and if necessary,
by choosing HMAX sufficiently small. If possible, you should choose XEND well beyond the expected
point where g x; yð Þ ¼ 0:0; for example make XEND� Xj j about 50% larger than the expected range. As
a simple check, if, with XEND fixed, a change in TOL does not lead to a significant change in Y at
XEND, then inaccuracy is not a likely source of error.

If D02BHF fails with IFAIL ¼ 3, then it could be called again with a larger value of TOL if this has not
already been tried. If the accuracy requested is really needed and cannot be obtained with this routine, the
system may be very stiff (see below) or so badly scaled that it cannot be solved to the required accuracy.

If D02BHF fails with IFAIL ¼ 2, it is likely that it has been called with a value of TOL which is so small
that a solution cannot be obtained on the range X to XEND. This can happen for well-behaved systems
and very small values of TOL. You should, however, consider whether there is a more fundamental
difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop with
IFAIL ¼ 2, unless overflow occurs first. If overflow occurs using D02BHF, D02PFF can be used
instead to detect the increasing solution, before overflow occurs. In any case, numerical integration
cannot be continued through a singularity, and analytical treatment should be considered;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components, the routine will
compute in very small steps in x (internally to D02BHF) to preserve stability. This will usually
exhibit itself by making the computing time excessively long, or occasionally by an exit with
IFAIL ¼ 2. Merson’s method is not efficient in such cases, and you should try D02EJF which uses a
Backward Differentiation Formula method. To determine whether a problem is stiff, D02PEF may be
used.

For well-behaved systems with no difficulties such as stiffness or singularities, the Merson method should
work well for low accuracy calculations (three or four figures). For high accuracy calculations or where
FCN is costly to evaluate, Merson’s method may not be appropriate and a computationally less expensive
method may be D02CJF which uses an Adams method.

For problems for which D02BHF is not sufficiently general, you should consider D02PFF. D02PFF is a
more general routine with many facilities including a more general error control criterion. D02PFF can be
combined with the rootfinder C05AZF and the interpolation routine D02PSF to solve equations involving
y1; y2; . . . ; yn and their derivatives.

D02BHF can also be used to solve an equation involving x, y1; y2; . . . ; yn and the derivatives of
y1; y2; . . . ; yn. For example in Section 9, D02BHF is used to find a value of X > 0:0 where Yð1Þ ¼ 0:0.
It could instead be used to find a turning-point of y1 by replacing the function g x; yð Þ in the program by:

REAL (kind=nag_wp) FUNCTION G(X,Y)
REAL (kind=nag_wp) X,Y(3),F(3)
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CALL FCN(X,Y,F)
G = F(1)
RETURN
END

This routine is only intended to locate the first zero of g x; yð Þ. If later zeros are required, you are strongly
advised to construct your own more general root-finding routines as discussed above.

9 Example

This example finds the value X > 0:0 at which y ¼ 0:0, where y, v, � are defined by

y0 ¼ tan�

v0 ¼ �0:032 tan�
v

� 0:02v
cos�

�0 ¼ �0:032

v2

and where at X ¼ 0:0 we are given y ¼ 0:5, v ¼ 0:5 and � ¼ �=5. We write y ¼ Yð1Þ, v ¼ Yð2Þ and
� ¼ Yð3Þ and we set TOL ¼ 1.0E�4 and TOL ¼ 1.0E�5 in turn so that we can compare the solutions.
We expect the solution X ’ 7:3 and so we set XEND ¼ 10:0 to avoid determining the solution of y ¼ 0:0
too near the end of the range of integration. The initial values and range are read from a data file.

9.1 Program Text

! D02BHF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

Module d02bhfe_mod

! D02BHF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 3, nin = 5, nout = 6

! n: number of differential equations
Contains

Subroutine fcn(x,y,f)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = -0.032E0_nag_wp
Real (Kind=nag_wp), Parameter :: beta = -0.02E0_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos, tan

! .. Executable Statements ..
f(1) = tan(y(3))
f(2) = alpha*tan(y(3))/y(2) + beta*y(2)/cos(y(3))
f(3) = alpha/y(2)**2
Return

End Subroutine fcn

Function g(x,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: g

! .. Scalar Arguments ..
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Real (Kind=nag_wp), Intent (In) :: x
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (In) :: y(*)
! .. Executable Statements ..

g = y(1)
Return

End Function g
End Module d02bhfe_mod

Program d02bhfe

! D02BHF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02bhf, nag_wp
Use d02bhfe_mod, Only: fcn, g, n, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: hmax, tol, x, xend, xinit
Integer :: i, ifail, irelab, j

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:,:), y(:), yinit(:)

! .. Executable Statements ..
Write (nout,*) ’D02BHF Example Program Results’
Allocate (w(n,7),y(n),yinit(n))

! Skip heading in data file
Read (nin,*)

! xinit: initial x value, xend : final x value.
! yinit: initial solution values, irelab: type of error control.

Read (nin,*) xinit
Read (nin,*) xend
Read (nin,*) yinit(1:n)
Read (nin,*) irelab
hmax = 0.0E0_nag_wp
Do i = 4, 5

tol = 10.0E0_nag_wp**(-i)
x = xinit
y(1:n) = yinit(1:n)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02bhf(x,xend,n,y,tol,irelab,hmax,fcn,g,w,ifail)

Write (nout,*)
Write (nout,99999) ’Calculation with TOL =’, tol
Write (nout,99998) ’ Root of Y(1) at’, x
Write (nout,99997) ’ Solution is’, (y(j),j=1,n)
If (tol<0.0E0_nag_wp) Then

Write (nout,*) ’ Over one-third steps controlled by HMAX’
End If

End Do

99999 Format (1X,A,E8.1)
99998 Format (1X,A,F7.4)
99997 Format (1X,A,3F13.5)

End Program d02bhfe

9.2 Program Data

D02BHF Example Program Data
0.0 : xinit

10.0 : xend
0.5 0.5 6.28318530717958647692E-1 : yinit
0 : irelab

D02 – Ordinary Differential Equations D02BHF

Mark 24 D02BHF.7



9.3 Program Results

D02BHF Example Program Results

Calculation with TOL = 0.1E-03
Root of Y(1) at 7.2884
Solution is 0.00000 0.47485 -0.76010

Calculation with TOL = 0.1E-04
Root of Y(1) at 7.2883
Solution is -0.00000 0.47486 -0.76011

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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