
G05 – Random Number Generators

G05BCFP

NAG Parallel Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check for implementation-dependent
details. You are advised to enclose any calls to NAG Parallel Library routines between calls to Z01AAFP and Z01ABFP.

1 Description

G05BCFP generates a vector of pseudo-random numbers of length n from a uniform distribution in the
semi-open interval [a, b).

A total of 273 statistically independent generators are available; it is possible to select a particular
generator and initialize the seeds for the generator by a preceding call to G05BBFP. If G05BBFP is not
used, default values for the generator and the seeds are assumed.

The routine G05BCFP always generates exactly the same pseudo-random numbers as would n consecutive
calls of G05ACFP.

2 Specification

SUBROUTINE G05BCFP(A, B, N, X)
INTEGER N
DOUBLE PRECISION A, B, X(∗)

3 Usage
3.1 Definitions

None.

3.2 Global and Local Arguments

All arguments are local.

4 Arguments

1: A — DOUBLE PRECISION Local Input
2: B — DOUBLE PRECISION Local Input

On entry: the end points of the distribution. It is not necessary to have A < B.

3: N — INTEGER Local Input/Local Output

On entry: n, the number of pseudo-random numbers to be generated. If N < 1, no pseudo-random
numbers are generated.

On exit: the actual number of pseudo-random numbers which were generated.

4: X(∗) — DOUBLE PRECISION array Local Output

On exit: the n pseudo-random numbers from the specified uniform distribution.

5 Errors and Warnings

None.

[NP3344/3/pdf] G05BCFP.1



G05BCFP NAG Parallel Library Manual

6 Further Comments

Repeatable sequences of random numbers can be generated by calling G05BBFP to set the seeds and
generator number before calling G05BCFP.

G05BCFP may be called without a prior call to Z01AAFP.

6.1 Algorithmic Detail

Each basic generator uses a Wichmann–Hill type generator (Wichmann and Hill [3]), which is a variant
of a multiplicative congruential algorithm to produce real pseudo-random numbers vi in the semi-open
interval [a, b):

k1,i = (c1 × k1,i−1) mod m1

k2,i = (c2 × k2,i−1) mod m2

k3,i = (c3 × k3,i−1) mod m3

k4,i = (c4 × k4,i−1) mod m4

ui =
(

k1,i

m1
+

k2,i

m2
+

k3,i

m3
+

k4,i

m4

)
mod 1.0

vi = (a + (b − a)× ui) mod b if a ≤ b

vi = (b + (a − b)× ui) mod a if a > b

where cj and mj, j = 1,4 are constant integers for each generator and kj,i on the left and right hand
of the equations are newly generated integer seeds and old seeds, respectively. The real values ui give
pseudo-random numbers in the semi-open interval [0, 1). The constants cj are in the range 112 to 127
and the constants mj are prime numbers in the range 16718909 to 16776971 which are close to 224 =
16777216. These constants have been chosen so that they give good results with the spectral test, see
Knuth [1] and Maclaren [2].

The period of each generator would be at least 292 if it were not for common factors between (m1 − 1),
(m2 − 1), (m3 − 1) and (m4 − 1). However, each should still have a period of at least 280. Further details
of the generators can be obtained from NAG and further discussion of the properties of these generators
is given in Maclaren [2] where it was shown that the generated pseudo-random sequences are essentially
independent of one another according to the spectral test.

7 References

[1] Knuth D E (1981) The Art of Computer Programming (Volume 2) Addison–Wesley (2nd Edition)

[2] Maclaren N M (1989) The generation of multiple independent sequences of pseudorandom numbers
Appl. Statist. 38 351–359

[3] Wichmann B A and Hill I D (1982) AS183 An efficient and portable pseudo-random number
generator Appl. Statist. 31 188–190

8 Example

This example generates a series of random numbers on each processor on a 2 by 2 logical grid of processors.
The routine G05BBFP is used to initialise the seeds and the generators.

G05BCFP.2 [NP3344/3/pdf]



G05 – Random Number Generators G05BCFP

8.1 Example Text

* G05BCFP Example Program Text
* NAG Parallel Library Release 3. NAG Copyright 1999.
* .. Parameters ..

INTEGER NOUT, NX
PARAMETER (NOUT=6,NX=10)
INTEGER MAG
PARAMETER (MAG=16909320)

* .. Local Scalars ..
DOUBLE PRECISION A, B
INTEGER I, ICNTXT, ICOFF, IFAIL, IGEN, MP, MYCOL, MYROW,

+ N, NP, NPCOL, NPROW
LOGICAL ROOT
CHARACTER CNUMOP, TITOP
CHARACTER*20 FORMT

* .. Local Arrays ..
DOUBLE PRECISION WORK(NX), X(NX)
INTEGER IS(5), ISEED(4), IWORK(5)

* .. External Functions ..
LOGICAL Z01ACFP
EXTERNAL Z01ACFP

* .. External Subroutines ..
EXTERNAL G05BBFP, G05BCFP, X04BFFP, X04BMFP, Z01AAFP,

+ Z01ABFP, Z01ZAFP
* .. Intrinsic Functions ..

INTRINSIC MOD
* .. Executable Statements ..

ROOT = Z01ACFP()
IF (ROOT) THEN

WRITE (NOUT,*) ’G05BCFP Example Program Results’
WRITE (NOUT,*)

END IF
*

MP = 2
NP = 2

*
* Declare the processor grid
*

IFAIL = 0
CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)

*
* Initialise the seeds and the generator

CALL Z01ZAFP(ICNTXT,NPROW,NPCOL,MYROW,MYCOL)
*
* Initialize the seeds and choose a generator number that depends
* on the processor position on the grid.
*

ISEED(1) = 207*(50*MYROW+19*MYCOL) + 5678212
ISEED(2) = 451*(70*MYROW+31*MYCOL) + 6252478
ISEED(3) = 912*(39*MYROW+56*MYCOL) + 2626279
ISEED(4) = 812*(69*MYROW+78*MYCOL) + 8932937
IGEN = NP*MYROW*4 + MP*MYCOL*6

*
* Make sure that the seeds are within the maximum value MAG
*

DO 40 I = 1, 4
20 IF (ISEED(I).GT.MAG) THEN

[NP3344/3/pdf] G05BCFP.3



G05BCFP NAG Parallel Library Manual

ISEED(I) = ISEED(I)/2
GO TO 20

END IF
40 CONTINUE

*
* Make sure that the generator is valid
*

IGEN = MOD(IGEN,273)
*
* Print the seeds and the generator
*

IS(1) = ISEED(1)
IS(2) = ISEED(2)
IS(3) = ISEED(3)
IS(4) = ISEED(4)
IS(5) = IGEN
IF (ROOT) THEN

WRITE (NOUT,*)
WRITE (NOUT,*) ’Seeds and the generator’
WRITE (NOUT,*)

END IF
FORMT = ’I10’
TITOP = ’Y’
CNUMOP = ’X’
ICOFF = 0
IFAIL = 0
CALL X04BMFP(ICNTXT,NOUT,1,5,IS,1,FORMT,TITOP,CNUMOP,ICOFF,IWORK,

+ 1,IFAIL)
CALL G05BBFP(ISEED,IGEN)

*
*
* Set the lower and upper limits of the distribution
* Set N (the number of random numbers per processor)
*

A = 2.0D0
B = 10.0D0
N = 5

*
* Now fill the vectors with random numbers
*

CALL G05BCFP(A,B,N,X)
*
* Print the vectors on the root processor
*

IF (ROOT) THEN
WRITE (NOUT,*)
WRITE (NOUT,*) ’Random numbers on each processor’
WRITE (NOUT,*)

END IF
FORMT = ’F12.5’
TITOP = ’Y’
CNUMOP = ’X’
ICOFF = 0
IFAIL = 0
CALL X04BFFP(ICNTXT,NOUT,1,N,X,1,FORMT,TITOP,CNUMOP,ICOFF,WORK,1,

+ IFAIL)

IFAIL = 0

G05BCFP.4 [NP3344/3/pdf]



G05 – Random Number Generators G05BCFP

CALL Z01ABFP(ICNTXT,’N’,IFAIL)
*

STOP
*

END

8.2 Example Data

None.

8.3 Example Results

G05BCFP Example Program Results

Seeds and the generator

Array from logical processor 0, 0

5678212 6252478 2626279 8932937 0

Array from logical processor 0, 1

5682145 6266459 2677351 8996273 12

Array from logical processor 1, 0

5688562 6284048 2661847 8988965 8

Array from logical processor 1, 1

5692495 6298029 2712919 9052301 20

Random numbers on each processor

Array from logical processor 0, 0

9.56336 2.84915 7.72301 6.21566 7.28020

Array from logical processor 0, 1

9.82620 9.52210 7.40150 2.36244 2.26696

Array from logical processor 1, 0

5.94202 7.37632 8.71823 3.59809 5.95273

Array from logical processor 1, 1

6.11450 5.30904 9.65975 6.32173 3.62686

[NP3344/3/pdf] G05BCFP.5 (last)


