F11 — Sparse Linear Algebra

F11GAFP
NAG Parallel Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check for implementation-dependent
details. You are advised to enclose any calls to NAG Parallel Library routines between calls to Z01AAFP and Z0O1ABFP.

Note: you should read the the F11 Chapter Introduction before using this routine. In particular, some of the notation and
terminology used in this document was introduced in Section 2.1 of the F11 Chapter Introduction.

1 Description

The suite consisting of the routines F11GAFP, F11GBFP and F11GCFP is designed to solve the
symmetric system of simultaneous linear equations Az = b of order n, where n is large and the coefficient
matrix A is sparse.

F11GAFP is a set-up routine which must be called before F11GBFP, the iterative solver. The third
routine in the suite, F11GCFP, can be used to return additional information about the computation. A
choice of methods is available:

conjugate gradient method (CG), suitable for positive-definite symmetric matrices;

SYMMLQ, suitable for both positive-definite and indefinite symmetric matrices, although less
efficient than the CG method when A is positive-definite.

It is recommended that the user should read Section 6, before proceeding to use this routine for the first
time.

2 Specification

SUBROUTINE F11GAFP(ICNTXT, METHOD, PRECON, SIGCMP, NORM, DISTR,

1 WEIGHT, ITERM, N, NLOC, TOL, MAXITN, ANORM,
2 SIGMAX, SIGTOL, MAXITS, MONIT, LWREQ, IFAIL)
DOUBLE PRECISION  TOL, ANORM, SIGMAX, SIGTOL
INTEGER ICNTXT, ITERM, N, NLOC, MAXITN, MAXITS, MONIT,
1 LWREQ, IFAIL
CHARACTER+1 PRECON, SIGCMP, NORM, DISTR, WEIGHT
CHARACTER () METHOD

3 Usage

3.1 Definitions

The following definitions are used in describing the data distribution within this document:

myp - the number of rows in the Library Grid.
Np - the number of columns in the Library Grid.
ni(i,j) — the number of elements of the distributed vectors stored locally on the processor at

location {i,j} of the Library Grid.

3.2 Global and Local Arguments

The following global input arguments must have the same value on entry to the routine on each processor
and the global output arguments will have the same value on exit from the routine on each processor:

Global input arguments: METHOD, PRECON, SIGCMP, NORM, DISTR, WEIGHT, ITERM,
N, TOL, MAXITN, ANORM, SIGMAX, SIGTOL, MAXITS, MONIT,
IFAIL

Global output arguments: IFAIL

The remaining arguments are local.
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3.3 Distribution Strategy

Not applicable.

3.4 Related Routines

This is the first in a suite of three routines. The other two routines are:

F11GBFP: to carry out the iterations

F11GCFP: to return additional information about the computation

4 Arguments

1:

ICNTXT — INTEGER Local Input

On entry: the Library context, usually returned by a call to the Library Grid initialisation routine
ZO1AAFP.

Note: the value of ICNTXT must not be changed.
METHOD — CHARACTER*(*) Global Input

On entry: specifies the iterative method to be used. The possible choices are:

'CG’ conjugate gradient;
'SYMMLQ’ SYMMLQ method.

Constraint: METHOD = "CG’ or 'SYMMLQ’.
Note: only the first character is checked, and this may be of either case.

PRECON — CHARACTER*1 Global Input

On entry: determines whether preconditioning is used. The possible choices are:

"N’ no preconditioning;
'P’  preconditioning.

Constraint: PRECON = 'N’ or 'P’.

SIGCMP — CHARACTER*1 Global Input

On entry: determines whether an estimate of oy(A4) = ||[E"*AE~T||5, the largest singular value
of the preconditioned matrix, is to be computed using the bisection method on the sequence of
symmetric tridiagonal matrices {7} } generated during the iteration (see Section 6 for further details).
Note that A = A when a preconditioner is not used. If SIGMAX > 0.0 (see below), then SIGCMP

is not referenced, i.e., when o1(A) is supplied as input. The possible choices are:

'S’ o1(A) is to be computed using the bisection method.

"N’ The bisection method is not used. -
If the termination criterion requires o1(A), then a less expensive estimate is computed.

See Section 6 for further details.
Suggested value: SIGCMP = "N’
Constraint: SIGCMP ="'S’ or 'N’.
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5:  NORM — CHARACTER*1 Global Input

On entry: defines the matrix and vector norm to be used in the termination criteria. The possible
choices are:

"1’ I1 norm;
T s norm;

2”1y norm.

Suggested value:

NORM = 'T’, if ITERM = 1;
NORM = "2, if ITERM = 2.

Constraints:

if ITERM = 1, then NORM = '1’, '’ or '2;
if ITERM = 2, then NORM = '2".

6: DISTR — CHARACTER*1 Global Input

On entry: defines how vectors are distributed across the processors in the Library Grid (see Section
2.5.3 of the F11 Chapter Introduction). The possible choices are:

"A’  vectors are distributed across all processors in the Library Grid;
'C’  vectors are distributed by column;
'R’ vectors are distributed by row.

Suggested value: DISTR = "A’.
Constraint: DISTR =’A’, 'C’ or 'R’.

7:  WEIGHT — CHARACTER*1 Global Input

On entry: specifies whether a vector w of user-supplied weights is to be used in the computation

of the vector norms required in termination criterion (2) of Section 6.1. (ITERM = 1): HUH;(:U) =

||v(w)||p, where viw) =w;v;, for i =1,2,...,n. The suffix p = 1,2, co denotes the vector norm used,

as specified by the parameter NORM. Note that weights cannot be used when ITERM = 2, i.e.,
when criterion (3) of Section 6.1 is used. The possible choices are:

"W’ user-supplied weights are to be used and must be supplied on initial entry to F11GBFP.

"N’ all weights are implicitly set equal to one. Weights do not need to be supplied on initial entry
to F11GBFP.

Suggested value: WEIGHT = 'N’.

Constraints:

if ITERM = 1, then WEIGHT = "W’ or "N’;
if ITERM = 2, then WEIGHT = "N’.

8: ITERM — INTEGER Global Input

On entry: defines the termination criterion to be used:

if ITERM = 1, the termination criterion defined in (2) of Section 6.1 is used (both CG and
SYMMLQ);

if ITERM = 2, the termination criterion defined in (3) of Section 6.1 is used (SYMMLQ method
only).

Suggested value: ITERM = 1.
Constraints: ITERM = 1 or 2.
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10:

11:

12:

13:

14:

N — INTEGER Global Input

On entry: the order n of the matrix A.

Constraint: N > 0.

NLOC — INTEGER Local Input

On entry: the number of vector elements stored locally, i.e., NLOC = n;(i, j), where i, j are the
row and column indices, respectively, of the calling processor. Note that information about the
distribution pattern is not required: only the number of vector elements stored locally must be
supplied.

Constraint: NLOC > 0 and, according to the value of DISTR:

DISTR = 'A: > i g) =mn;
i=0 ;=0
mp—1
DISTR = 'C”: ni(i,j) = n,
=0

np—1
DISTR = "R Y (i, j) =n,

nl(oaj) :nl(laj) = .. :nl(mp - 1;]) and
G=0,...,mp—1.

TOL — DOUBLE PRECISION Global Input

On entry: the tolerance 7 for the termination criterion. If TOL < 0.0, 7 = max(y/€,v/n€) is used,
where € is the machine precision. Otherwise 7 = max(TOL,10¢,v/n €) is used.

Constraint: TOL < 1.0.

MAXITN — INTEGER Global Input
On entry: the maximum number of iterations.

Constraint: MAXITN > 0.

ANORM — DOUBLE PRECISION Global Input

On entry: if ANORM > 0.0, the value of || A||, to be used in the termination criterion (2) of Section
6.1 (ITERM = 1).

If ANORM < 0.0, ITERM = 1 and NORM = "1’ or 'T’, then ||A||; or ||Al|c is estimated internally
by F11GBFP.

If ITERM = 2, then ANORM is not referenced.
Constraint: if ITERM = 1 and NORM = ’2’, then ANORM > 0.0.

SIGMAX — DOUBLE PRECISION Global Input

On entry: if SIGMAX > 0.0, the value of the largest singular value of the preconditioned matrix:
0'1(14) = ||E_1AE_TH2.

If SIGMAX < 0.0, 01 (A) is estimated by F11GBFP when either SIGCMP = 'S’ or the termination
criterion defined in (3) of Section 6.1 is used. Otherwise, SIGMAX is not referenced.
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15:

16:

17:

18:

19:

5

SIGTOL — DOUBLE PRECISION Global Input

On entry: the tolerance used in assessing the convergence of the estimate of o1(A) = ||Al|2 when
the bisection method is used. If SIGTOL < 0.0, the default value SIGTOL = 0.01 is used. The
actual value used is max (SIGTOL,e). If SIGCMP = 'N’ or SIGMAX > 0.0, then SIGTOL is not
referenced.

Suggested value: SIGTOL = 0.01 should be sufficient in most cases.
Constraint: if SIGCMP = ’S’ and SIGMAX < 0.0, then SIGTOL < 1.0.

MAXITS — INTEGER Global Input

On entry: the maximum iteration number k = MAXITS for which o1 (T}) is computed by bisection
(see also Section 6.1). If SIGCMP = 'N’ or SIGMAX > 0.0, then MAXITS is not referenced.

Suggested value: MAXITS = min(10,n) when SIGTOL is of the order of its default value (0.01).
Constraint: if SIGCMP =’S’ and SIGMAX < 0.0, then 1 < MAXITS < MAXITN.

MONIT — INTEGER Global Input

On entry: if MONIT > 0, the frequency at which a monitoring step is executed by F11GBFP: the
current solution and residual iterates will be returned by F11GBFP and a call to F11GCFP made
possible every MONIT iterations, starting from iteration MONIT. Otherwise, no monitoring takes
place.

There are some additional computational costs involved in monitoring the solution and residual
vectors when the Lanczos method (SYMMLQ) is used.

Constraint: MONIT < MAXITN.

LWREQ — INTEGER Local Output

On exit: the amount of workspace required by F11GBFP. See also Section 4 of the document for
F11GBFP.

IFAIL — INTEGER Global Input/Global Output

The NAG Parallel Library provides a mechanism, via the routine Z02EAFP, to reduce the amount
of parameter validation performed by this routine. For a full description refer to the Z02 Chapter
Introduction.

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this argument (described in
the Essential Introduction) the recommended values are:

IFAIL = 0, if multigridding is not employed;
IFAIL = —1, if multigridding is employed.

On exit: IFAIL = 0 (or —9999 if reduced error checking is enabled) unless the routine detects an
error (see Section 5).

Errors and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output from the root processor (or processor
{0,0} when the root processor is not available) on the current error message unit (as defined by X04AAF).

5.1 Full Error Checking Mode Only
IFAIL = —2000

The routine has been called with an invalid value of ICNTXT on one or more processors.

IFAIL = —1000

The logical processor grid and library mechanism (Library Grid) have not been correctly defined,
see ZOIAAFP.
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IFAIL = —i

On entry, the ith argument had illegal value(s) on one or more processors. For global arguments,
this may also be caused by the ith argument not having the same value on all processors (see also
Section 3.2).

IFAIL =1

F11GAFP has been called out of sequence. Either F11GAFP has been called twice without calling
F11GBFP in between, or F11GBFP has not completed its current task.

6 Further Comments
6.1 Algorithmic Detail

The conjugate gradient method (CG) (see Hestenes and Stiefel [4], Golub and van Loan [3], Barrett et
al.[1], Dias da Cunha and Hopkins [2]) should be ideally applied when the matrix A is positive-definite.
Otherwise the Lanczos Method (SYMMLQ), based upon the algorithm SYMMLQ (Paige and Saunders
[6], Barrett et al.[1]), should be used. It is more robust than the conjugate gradient method (CG) but
less efficient when A is positive-definite.

Both the conjugate gradient method (CG) and Lanczos (SYMMLQ) method start from the residual
ro = b— Axg, where ¢ is an initial estimate for the solution (often xg = 0), and generate an orthogonal
basis for the Krylov subspace span{Akro}, for £k =0,1,..., by means of three-term recurrence relations
(Golub and van Loan [3]). A sequence of symmetric tridiagonal matrices {T}} is also generated. Here and
in the following, the index k denotes the iteration count. The resulting symmetric tridiagonal systems of
equations are usually more easily solved than the original problem. A sequence of solution iterates {x }
is thus generated such that the sequence of the norms of the residuals {||rk||} converges to a required
tolerance. Note that, in general, the convergence is not monotonic.

In exact arithmetic, after n iterations, this process is equivalent to an orthogonal reduction of A to
symmetric tridiagonal form, T,, = QT AQ; the solution z,, would thus achieve exact convergence. In
finite-precision arithmetic, cancellation and round-off errors accumulate causing loss of orthogonality.
These methods must therefore be viewed as genuinely iterative methods, able to converge to a solution
within a prescribed tolerance.

The orthogonal basis is not formed explicitly in either method. The basic difference between the two
methods lies in the method of solution of the resulting symmetric tridiagonal systems of equations: the
conjugate gradient method (CG) is equivalent to carrying out an LDLT (Cholesky) factorization whereas
the Lanczos method (SYMMLQ) uses an L@ factorization.

Faster convergence can be achieved using a preconditioner (Golub and van Loan [3], Barrett et al.[1]).
A preconditioner maps the original system of equations onto a different system, say

Az = b, (1)

with, hopefully, better characteristics with respect to its speed of convergence: for example, the condition
number of the matrix of the coefficients can be improved or eigenvalues in its spectrum can be made to
coalesce. An orthogonal basis for the Krylov subspace span{flkfo}, for k=0,1,..., is generated and the
solution proceeds as outlined above. The algorithms used are such that the solution and residual iterates
of the original system are produced, not their preconditioned counterparts. Note that an unsuitable
preconditioner or no preconditioning at all may result in a very slow rate, or lack, of convergence.
However, preconditioning involves a trade-off between the reduction in the number of iterations required
for convergence and the additional computational costs per iteration. Also, setting up a preconditioner
may involve non-negligible overheads.

A preconditioner must be symmetric and positive-definite, i.e. representable by M = EET | where
M is non-singular, and such that A = E7'AE~T ~ I, in (1), where I,, is the identity matrix of order
n. Also, we can define 7 = E~' and Z = ETx. These are formal definitions, used only in the design of
the algorithms; in practice, only the means to compute the matrix-vector products v = Au and to solve
the preconditioning equations Mv = u are required, that is, explicit information about M, F or their
inverses in not required at any stage.

The first termination criterion
relly < 7 ([[0llp + | Allp [[2&]lp) (2)
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is available for both the conjugate gradient method (CG) and the Lanczos method (SYMMLQ). In (2),
p = 1,00 or 2 and 7 denotes a user-specified tolerance subject to max(10,y/n) ¢ < 7 < 1, where € is
the machine precision. Facilities are provided for the estimation of the norm of the matrix of the
coefficients ||A|; = || Aloo, when this is not known in advance, used in (2), by applying Higham’s method
(Higham [5]). Note that ||A||2 cannot be estimated internally. This criterion uses an error bound derived
from backward error analysis to ensure that the computed solution is the exact solution of a problem as
close to the original as the termination tolerance requires. Termination criteria employing bounds derived
from forward error analysis could be used, but any such criteria would require information about the
condition number x(A) which is not easily obtainable.

The second termination criterion

712 < 7 max(1.0, [|Bll2/lI7oll2) (I7oll2 + o1(A) [ AZk[l2) (3)

is available only for the Lanczos method (SYMMLQ). In (3), 01(A) = ||A|2 is the largest singular value of
the (preconditioned) iteration matrix A. This termination criterion monitors the progress of the solution

of the preconditioned system of equations and is less expensive to apply than criterion (2). When o4 (A)

is not supplied, facilities are provided for its estimation by o1(A) ~ max oy (Tk). The interlacing property

01(Ti—1) < 01(Tk) and Gerschgorin’s theorem provide lower and upper bounds from which oy (T}) can

be easily computed by bisection. Alternatively, the less expensive estimate o (A) ~ max [IT%]|1 can be

used, where 01(A) < ||Tk||1 by Gerschgorin’s theorem. Note that only order of magnitude estimates are
required by the termination criterion.

Termination criterion (2) is the recommended choice, despite its (small) additional costs per iteration
when using the Lanczos method (SYMMLQ). Also, if the norm of the initial estimate is much larger
than the norm of the solution, that is, if ||zo|| > ||z||, a dramatic loss of significant digits could result in
complete lack of convergence. The use of criterion (2) will enable the detection of such a situation, and
the iteration will be restarted at a suitable point. No such restart facilities are provided for criterion (3).

When o1 (A) is not supplied (SIGMAX < 0.0) but it is required, it is estimated by F11GBFP using either
of the two methods described above, as specified by the parameter SIGCMP. In particular, if SIGCMP
=S’, then the computation of oq(A) is deemed to have converged when the differences between three
successive values of o1(T}) differ, in a relative sense, by less than the tolerance SIGTOL, i.e. when

(k) _ _(k—1) (k) _ _(k—2)
max < 1 %1 |, o1 b | ) < SIGTOL.

U%k) U%k)

The computation of o;(A) is also terminated when the iteration count exceeds the maximum value
allowed, i.e. £ > MAXITS.

Bisection is increasingly expensive with increasing iteration count. A reasonably large value of SIGTOL,
of the order of the suggested value, is recommended and an excessive value of MAXITS should be avoided.

Under these conditions, o1 (A) usually converges within very few iterations.

6.2 Parallelism Detail
Not applicable.

6.3 Accuracy
Not applicable.

6.4 Computational Costs
The computational costs of F11GAFP are negligible compared to the costs of F11GBFP.
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8 Example

This example solves a linear system of equations Az = b representing the five-point finite-difference
approximation to the partial differential equation:

0w L 0w L f
Cl—=——5 +co—— +c3w =
152 2 9,2 3
for (z,5) € Q = (0,1)?, where ¢;, i = 1,...,3 are given real constants. The problem is discretised using

central differences on a uniform n, x n, mesh and Dirichlet boundary conditions are prescribed on the
entire boundary of 2. The right-hand side and Dirichlet boundary values are obtained from the known
true solution. The example also computes the infinity norm of the error between the approximate and
true solutions.

Note that this example cannot be expected to work correctly for arbitrary choices of the coefficients ¢;,
since the mathematical problem is not always well-posed. However, it should generally work satisfactorily
for elliptic problems.

8.1 Example Text

* F11GAFP Example Program Text
* NAG Parallel Library Release 3 Revised. NAG Copyright 1999.
. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER MLMAX, NBLKS
PARAMETER (MLMAX=1000,NBLKS=4)
INTEGER LA, LC
PARAMETER (LA=5*%MLMAX,LC=2*LA)
INTEGER LIA, LWORK
PARAMETER (LIA=-1,LWORK=20*MLMAX)
* .. Scalars in Common ..
DOUBLE PRECISION C1, C2, C3
INTEGER NX
* .. Local Scalars ..
DOUBLE PRECISION ANORM, ENORM, ENORML, SIGERR, SIGMAX, SIGTOL,
+ STPLHS, STPRHS, TOL
INTEGER I, ICNTXT, IFAIL, IREVCM, ITERM, ITN, ITS, IW, J,
+ LEVEL, LW, LWREQ, MAXITN, MAXITS, MB, ML, MLO,
+ MLOMAX, MONIT, MP, N, NB, NINTE, NINTI, NNZ,
+ NNZC, NOVRLP, NP
LOGICAL LOOP, ROOT, ZGRID
CHARACTER CHECK, DISTR, DUP, KIND, NORM, PRECON, SIGCMP,
+ SYMM, WEIGHT, ZERO
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CHARACTER*10 METHOD
CHARACTER*80 FORMAT
* .. Local Arrays ..
DOUBLE PRECISION A(LA), C(LC), DTOL(NBLKS), TS(MLMAX), U(MLMAX),
+ V(MLMAX) , WORK(LWORK)
INTEGER CA(1), TAINFO(200), ICOL(LA), ICOLC(LC), IERR(1),
+ IPIVP(MLMAX), IPIVQ(MLMAX), IROW(LA), IROWC(LC),
+ LFILL(NBLKS), NPIVM(NBLKS), RA(1)
CHARACTER MILU(NBLKS), PSTRAT(NBLKS)
* .. External Functions ..
LOGICAL Z0O1ACFP
EXTERNAL ZO1ACFP
* .. External Subroutines ..
EXTERNAL DGERV2D, DGESD2D, FO1CPFP, FO1YAFP, FO1YEFP,
+ F11DFFP, F11DGFP, F11GAFP, F11GBFP, F11GCFP,
+ F11XBFP, F11ZBFP, F11ZZFP, GMAT, GSOL, GVEC,
+ PRINTI, XO4YAFP, ZO1AAFP, ZO1ABFP, ZO1BBFP,
+ ZO2EAFP
* .. Intrinsic Functiomns ..
INTRINSIC ABS, MAX
* .. Common blocks ..
COMMON /PROB/C1, C2, C3, NX
* .. Executable Statements ..

ROOT = ZO1ACFP()
IF (ROOT) WRITE (NOUT,*) ’F11GAFP Example Program Results’

Open input file on all processors

* ¥ ¥

OPEN (NIN,FILE=’fllgafpe.d’)

Skip heading in data file
Read processor grid size

* ¥ ¥ *

READ (NIN,*)
READ (NIN,*) MP, NP

Read problem parameters

READ (NIN,*) NX
N = NX*%*2

Read algorithmic parameters

READ (NIN,*) METHOD

READ (NIN,=*) PRECON, SIGCMP, NORM, ITERM, MONIT
READ (NIN,*) TOL, MAXITN

READ (NIN,*) SIGTOL, MAXITS

READ (NIN,*) FORMAT

READ (NIN,*) LEVEL

Read coefficients in PDE

READ (NIN,*) C1, C2, C3

Close input file

CLOSE (NIN)
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Initialize Library Grid

IFAIL = O
CALL ZO1AAFP(ICNTXT,MP,NP,IFAIL)

Check whether processor is part of the Library Grid

CALL ZO1BBFP(ICNTXT,ZGRID,IFAIL)
IF ( .NOT. ZGRID) GO TO 160

Set error checking level
CALL ZO2EAFP (ICNTXT,LEVEL,IFAIL)
Generate sparse matrix

= (N+MP*NP-1)/ (MP*NP)
CALL FO1YAFP(ICNTXT,GMAT,N,MB,NNZ,A,LA,IROW,ICOL,IFAIL)

Set up auxiliary data for subsequent operations

DUP = ’F’
ZERO = 'R’
SYMM = °S’
KIND = ’N’
CALL F11ZBFP(ICNTXT,N,MB,NNZ,A,IROW,ICOL,DUP,ZERO,SYMM,KIND,
+ TAINFO,LIA,IFAIL)
*
* Check whether number of rows is less than the corresponding
* maximum possible value determined by MLMAX
*
ML = IAINFO(3)
NB = ML/MB
Check number of blocks is less than max allowed
IERR(1) =
IF (NB.GT.NBLKS) IERR(1) =1
IF (ML.GT.MLMAX) IERR(1) =1
CALL FO1CPFP(ICNTXT,’X’,’Al11’,1,1,IERR,1,RA,CA,1,0,-1,-1,IFAIL)
IF (IERR(1).NE.O) THEN
IF (ROOT) WRITE (NOUT,99996)
GO TO 140
END IF
*
* Generate right-hand side vector
*
CALL FO1YEFP(ICNTXT,GVEC,N,V,IAINFO,IFAIL)
*
* Set up block Jacobi preconditioner
* Initialise parameters for each block on processor
*
DO 20 J =1, NB
LFILL(J) =
DTOL(J) = 1 -1
PSTRAT(J) = N’
MILU(J) = °N

20 CONTINUE
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NOVRLP = 0

CALL F11DFFP(ICNTXT,N,NNZ,A,IROW,ICOL,NOVRLP,LFILL,DTOL,PSTRAT,
+ MILU, IPIVP,IPIVQ,NNZC,C,LC,IROWC,ICOLC,NPIVM, IAINFO,
+ LIA,IFAIL)

* Initialize solver suite

WEIGHT = ’N’

DISTR = ’A’

ANORM = 0.DO

SIGMAX = 0.DO

CHECK = ’N’

CALL F11GAFP(ICNTXT,METHOD,PRECON,SIGCMP,NORM,DISTR,WEIGHT, ITERM,
+ N,ML,TOL,MAXITN, ANORM, SIGMAX,SIGTOL,MAXITS,MONIT,
+ LWREQ, IFAIL)

* Check workspace size

NINTI = IAINFO(6)
NINTE = IAINFO(7)
MLO = IAINFO(4)
MLOMAX = IAINFO(5)
IERR(1) = 0
IF (ROOT) THEN
IF ((LWREQ+MAX(NINTI,NINTE,2*MLO,ML+MLOMAX)) .GT.LWORK) IERR(1)
+ =1
ELSE
IF ((LWREQ+MAX(NINTI,NINTE,2+MLO)).GT.LWORK) IERR(1) = 1
END IF

CALL FO1CPFP(ICNTXT,’X’,’A11’,1,1,IERR,1,RA,CA,1,0,-1,-1,IFAIL)
IF (IERR(1).NE.O) THEN

WRITE (NOUT,99995)

GO TO 140
END IF

Print summary of input parameters and options

IF (ROOT) CALL PRINTI(NOUT,METHOD,PRECON,SIGCMP,NORM,DISTR,ITERM,
+ N,MAXITN,TOL,SIGTOL,MONIT,MP,NP,MB)

Set initial approximation to solution

* * x*

DO 40 I =1, ML
U 0.DO
40 CONTINUE

Solve equations using reverse communication scheme

LW = LWREQ
IW = LWREQ + 1
IREVCM = 0O

LOOP = .TRUE.
60 CONTINUE

CALL F11GBFP(ICNTXT,IREVCM,U,V,WORK,LW,IFAIL)
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IF (IREVCM.EQ.1) THEN

*
* Compute v = A *x u
*
CALL F11XBFP(ICNTXT, ’No transpose’,N,NNZ,A,IROW,ICOL,CHECK,U,V,
+ TAINFO,WORK(IW) ,IFAIL)
*
ELSE IF (IREVCM.EQ.2) THEN
*
* Solve M *x v = u
*
CALL F11DGFP(ICNTXT, ’No transpose’,N,NNZC,C,IROWC,ICOLC,IPIVP,
+ IPIVQ,CHECK,U,V,IAINFO,WORK(IW) ,IFAIL)
ELSE IF (IREVCM.EQ.3) THEN
*
* Monitoring
*
CALL F11GCFP(ICNTXT,ITN,STPLHS,STPRHS,ANORM,SIGMAX,ITS,SIGERR,
+ IFAIL)
IF (ROOT) THEN
WRITE (NOUT,’ (/1X,’’Monitoring step’’/1X,15(’’->?)/)")
WRITE (NQOUT,99999)
+ ’Number of iterations carried out -7,
+ ITN
WRITE (NOUT,99997)
+ ’Left-hand side of termination criterion (STPLHS) =2,
+ STPLHS
WRITE (NQOUT,99997)
+ ’Right-hand side of termination criterion (STPRHS) -7,
+ STPRHS
IF (ITERM.EQ.2 .OR. SIGCMP.EQ.’S’) WRITE (NOUT,99998)
+ ’Largest singular value of (precond.) matrix (SIGMAX) -’
+ , SIGMAX

IF (SIGCMP.EQ.’S’) THEN
WRITE (NOUT,99999)

+ ’Number of iterations used to compute SIGMAX (ITS) -’
+ , ITS
WRITE (NOUT,99998)

+ ’Relative error in largest singular value (SIGERR) =’
+ , SIGERR

END IF

WRITE (NOUT,
+ >(/1X,’’Solution vector (last iterate)’’/1X,30(°’-’)/)’)

END IF

CALL XO4YAFP(ICNTXT,NOUT,N,U,FORMAT,IAINFO,WORK(IW) ,6IFAIL)
IF (ROOT) WRITE (NOUT,

+ ’(/1X,’ ’Residual vector (last iterate)’’/1X,30(’’-)/)?)
CALL XO4YAFP(ICNTXT,NOUT,N,V,FORMAT,IAINFO,WORK(IW),IFAIL)

ELSE IF (IREVCM.EQ.4) THEN
Termination
LOOP = .FALSE.

END IF
IF (LOOP) GO TO 60
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* ¥ ¥

80

Generate true solution TS and error on local part of mesh

CALL FO1YEFP(ICNTXT,GSOL,N,TS,IAINFO,IFAIL)
ENORML = 0.DO

DO 80 I = 1, IAINFO(3)
ENORML = MAX(ENORML,ABS(TS(I)-U(I)))
CONTINUE

IF ( .NOT. ROOT) CALL DGESD2D(ICNTXT,1,1,ENORML,1,0,0)
Get information about final solution

CALL F11GCFP(ICNTXT,ITN,STPLHS,STPRHS,ANORM,SIGMAX,ITS,SIGERR,

-

)

+ IFAIL)
Produce final report
IF (ROOT) THEN
WRITE (NOUT,’(/1X,’’Summary of results’’/1X,18(’’-’’)/)?)
WRITE (NOUT,99999)
+ ’Number of iterations carried out (ITN) -2,
WRITE (NOUT,99997)
+ ’Left-hand side of termination criterion (STPLHS) =2,
+ STPLHS
WRITE (NOUT,99997)
+ ’Right-hand side of termination criterion (STPRHS) =7,
+ STPRHS
IF (ITERM.EQ.1) WRITE (NOUT,99998)
+ ’Norm of the matrix of the coefficients (ANORM) -
+ ANORM
IF (ITERM.EQ.2 .0OR. SIGCMP.EQ.’S’) WRITE (NOUT,99998)
+ ’Largest singular value of (precond.) matrix (SIGMAX) -’,
+ SIGMAX
IF (SIGCMP.EQ.’S’) THEN
WRITE (NOUT,99999)
+ ’Number of iterations used to compute SIGMAX (ITS)
+ ITS
WRITE (NOUT,99998)
+ ’Relative error in largest singular value (SIGERR)
+ SIGERR
END IF
Receive local error norms and calculate global error norm
ENORM = ENORML
DO 120 I = 1, MP
DO 100 J =1, NP
IF (I*J.GT.1) THEN
CALL DGERV2D(ICNTXT,1,1,ENORML,1,I-1,J-1)
ENORM = MAX(ENORM,ENORML)
END IF
100 CONTINUE
120 CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,99998) ’Error norm =’, ENORM
WRITE (NOUT,’ (/1X,’’Solution vector’’/1X,15(>’=’2)/)’)

END IF
CALL XO4YAFP(ICNTXT,NOUT,N,U,FORMAT,IAINFO,WORK(IW),IFAIL)
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140

160

99999
99998
99997
99996
99995

* X X X X X X X X X ¥ *

* ¥ ¥ ¥

Release internally allocated memory if necessary

IF (LIA.EQ.-1) CALL F11ZZFP(ICNTXT,IAINFO,IFAIL)

Finalize Library Grid

CALL ZO1ABFP(ICNTXT,’N’,IFAIL)
End of example program

STOP

FORMAT (1X,A,I5)

FORMAT (1X,A,2X,1P,E12.4)
FORMAT (1X,A,3X,1P,D9.2)

NAG Parallel Library Manual

FORMAT (1X,’** ERROR: Number of rows per processor too large’)

FORMAT (1X,’** ERROR: LWORK too small’)
END

SUBROUTINE GMAT(I1,I2,N,NNZL,AL,LAL,IROWL,ICOLL)

This routine generates a block tridiagonal matrix
representing the five-point finite difference

approximation to the equation:
cl*w_xx + c2*w_yy + c3*w = £

where the ci are real coefficients.
The right-hand side vector is set up in the
routine GVEC.

. Scalar Arguments ..
INTEGER I1, I2, LAL, N, NNZL
. Array Arguments ..
DOUBLE PRECISION AL(LAL)
INTEGER ICOLL(LAL), IROWL(LAL)
. Scalars in Common ..
DOUBLE PRECISION C1, C2, C3
INTEGER NX
. Local Scalars ..

DOUBLE PRECISION D1, D2, D3, D4, D5, H, RH, RH2

INTEGER I, IX, IY
. Intrinsic Functions ..

INTRINSIC DBLE, MOD
. Common blocks ..

COMMON /PROB/C1, C2, C3, NX
. Executable Statements ..

Calculate details of mesh
H = 1/DBLE(NX+1)

RH = 1.DO/H

RH2 = RH*RH

Define stencil coefficient

F11GAFP.14
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D1
D2
D3
D4
D5

IF (LAL.LT.5%(I2-I1+1)) THEN

= -2xRH2*(C1+C2) + C3

= RH2xC1
= RH2xC1
= RH2xC2
= RH2xC2

NNZL = -1
RETURN

END IF

NNZL = 0

DO

Set up diagonal elements of matrix first

Now add off-diagonal elements where necessary

20 I = I,

IX
Iy

NNZL = NNZL
TROWL (NNZL)
ICOLL(NNZL)
AL (NNZL) =

IF (IX.GT.1) THEN
NNZL = NNZL
TROWL (NNZL)
ICOLL(NNZL)

I2

+

D1

1

+

AL(NNZL) = D3

END IF

1 + MOD(I-1,NX)
1+ (I-1)/NX

1
I
I

IF (IX.LT.NX) THEN

NNZL = NNZL
IROWL (NNZL)
ICOLL(NNZL)

+

AL (NNZL) = D2

END IF

IF (IY.GT.1) THEN
NNZL = NNZL
IROWL (NNZL)
ICOLL (NNZL)

+

AL (NNZL) = D5

END IF

IF (IY.LT.NX) THEN
NNZL = NNZL
TROWL (NNZL)
ICOLL(NNZL)

+

AL(NNZL) = D4

END IF

20 CONTINUE
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RETURN
END

SUBROUTINE GVEC(I1,I2,F)

Computes the processor piece of the right-hand side vector
F of the linear system described in the subroutine GMAT.
It is based on the true solution defined in TSOL.

* X X ¥ ¥ *

. Scalar Arguments ..
INTEGER I1, I2
* .. Array Arguments ..
DOUBLE PRECISION F(*)
* .. Scalars in Common ..
DOUBLE PRECISION C1, C2, C3
INTEGER NX
* .. Local Scalars ..
DOUBLE PRECISION D1, D2, D3, D4, D5, H, RH, RH2, W, WX, WXX, WY,
+ wYY, X, Y
INTEGER I, IND, IX, IY
* .. External Subroutines ..
EXTERNAL TSOL
* .. Intrinsic Functiomns ..
INTRINSIC DBLE, MOD
* .. Common blocks ..
COMMON /PROB/C1, C2, C3, NX
. Executable Statements ..

Calculate details of mesh

* ¥ ¥ *

H = 1/DBLE(NX+1)
RH = 1.DO/H
RH2 = RH*RH

Define stencil coefficients

D1 = -2xRH2*(C1+C2) + C3
D2 = RH2xC1
D3 = RH2x%C1
D4 = RH2xC2
D5 = RH2xC2

DO 20 I = I1, I2

Calculate coordinates (X,Y) of mesh point
IX
1Y

X
Y

1 + MOD(I-1,NX)
1+ (I-1)/NX
IX*H

IY*H

Calculate true solution and its derivatives

CALL TSOL(X,Y,W,WX,WY,WXX,WYY)
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* Set

Mod

* ¥ ¥

20 CON

RET
END

SUB

* ¥ ¥ ¥

INT

DOU

DOU

INT

INT

EXT

INT

COoM

Cal

* ¥ ¥ ¥

H =

DO

Calculate coordinates (X,Y) of mesh point

[NP3344/3/pdf]

right-hand side at interior points

IND=1-1I1+1
F(IND) = C1*WXX + C2*WYY + C3#*W

ify right-hand side near boundaries

IF (IX.EQ.1) THEN
CALL TSOL(0.DO,Y,W,WX,WY,WXX,WYY)
F(IND) = F(IND) - D3x*W

ELSE IF (IX.EQ.NX) THEN
CALL TSOL(1.DO,Y,W,WX,WY,WXX,WYY)
F(IND) = F(IND) - D2x*W

END IF

IF (IY.EQ.1) THEN
CALL TSOL(X,0.DO,W,WX,WY,WXX,WYY)
F(IND) = F(IND) - D5*W

ELSE IF (IY.EQ.NX) THEN
CALL TSOL(X,1.DO,W,WX,WY,WXX,WYY)
F(IND) = F(IND) - D4x*W

END IF

TINUE

URN

ROUTINE GSOL(I1,I2,TS)

Computes the processor piece of the true solution.

. Scalar Arguments ..

EGER I1, I2

. Array Arguments ..

BLE PRECISION TS(x)

. Scalars in Common ..

BLE PRECISION C1, C2, C3
EGER NX

. Local Scalars ..
DOUBLE PRECISION H, W, WX, WXX, WY, WYY, X, Y

EGER I, IND, IX, IY
. External Subroutines ..
ERNAL TSOL
. Intrinsic Functions ..
RINSIC DBLE, MOD
. Common blocks ..
MON /PROB/C1, C2, C3, NX

. Executable Statements ..

culate details of mesh

1/DBLE (NX+1)

20 I = I1, I2

F11GAFP
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IX = 1 + MOD(I-1,NX)
Iy = 1 + (I-1)/NX

X = IX*H
Y = IY*H
*
* Calculate true solution and store in TS
CALL TSOL(X,Y,W,WX,WY,WXX,WYY)
IND=1-1I1+1
TS(IND) = W
*
20 CONTINUE
*
RETURN
END
SUBROUTINE TSOL(X,Y,W,WX,WY,WXX,WYY)
*
* Defines a true solution W and its derivatives.
* This example is for the function:
*
* w(X,y) = X*kX-2%y*xy
*
* . Scalar Arguments ..
DOUBLE PRECISION W, WX, WXX, WY, WYY, X, Y
* .. Executable Statements ..
W = X*xX — 2*xYxY
WX = 2x*X
WY = -4x%Y
WXX = 2.0
WYY = -4.0
*
RETURN
END
SUBROUTINE PRINTI(NOUT,METHOD,PRECON,SIGCMP,NORM,DISTR,ITERM,N,
+ MAXITN,TOL,SIGTOL,MONIT,MP,NP,MB)
*
* Prints a summary of the input parameters and options.
*
*
* . Scalar Arguments ..
DOUBLE PRECISION SIGTOL, TOL
INTEGER ITERM, MAXITN, MB, MONIT, MP, N, NOUT, NP
CHARACTER DISTR, NORM, PRECON, SIGCMP
CHARACTER*10 METHOD
* .. Executable Statements ..

WRITE (NOUT,99999)
WRITE (NOUT,99997)

+ ’Number of processor rows in the Library grid (MP) -7, MP
WRITE (NOUT,99997)
+ ’Number of processor columns in the Library grid (NP) -’, NP
WRITE (NOUT,99997)
+ ’0Order of the system of equations (N) -, N
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WRITE (NOUT,99997)

+ ’Block size used in the data distribution (MB) -’, MB
WRITE (NOUT,99998)
+ ’Method used (METHOD) -2, METHOD
WRITE (NOUT,99998)
+ ’Use the preconditioner (PRECON) -’, PRECON
WRITE (NOUT,99998)
+ ’Use bisection for largest singular value (SIGCMP) -’, SIGCMP
WRITE (NOUT,99998)
+ ’Matrix and vector norm in use (NORM) -’ NORM
WRITE (NOUT,99998)
+ ’Distribution of vectors (DISTR) -2, DISTR
WRITE (NOUT,99997)
+ ’Termination criterion (ITERM) -2, ITERM
WRITE (NOUT,99996)
+ ’Tolerance (TOL) -7, TOL
WRITE (NOUT,99997)
+ ’Maximum number of iterations allowed (MAXITN) -2, MAXITN
WRITE (NOUT,99996)
+ ’Tolerance for the largest singular value (SIGTOL) -’, SIGTOL
WRITE (NOUT,99997)
+ ’Monitoring frequency (MONIT) -’, MONIT
*
* End of subroutine PRINTI
RETURN

*

*

99999 FORMAT (/1X,’Summary of input parameters and optiomns’,/1X,39(’-’),
+ /)

99998 FORMAT (1X,A,4X,A)

99997 FORMAT (1X,A,Ib5)

99996 FORMAT (1X,A,3X,1P,D9.2)
END

8.2 Example Data

F11GAFP Example Program Data

2 2 : MP, NP
8 . NX
’CG? :  METHOD
'pr g 2 1 0 :  PRECON, SIGCMP, NORM, ITERM, MONIT
1.0D-09 100 :  TOL, MAXITN
1.0D-02 6 : SIGTOL, MAXITS
’ (8F8.4)° :  FORMAT
0 :  LEVEL
-1.0 -3.0 0.1 : C1, C2, C3
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8.3 Example Results
F11GAFP Example Program Results

Summary of input parameters and options

|
N

Number of processor rows in the Library grid (MP)

Number of processor columns in the Library grid (NP)
Order of the system of equations (N) - 64
Block size used in the data distribution (MB) - 16
Method used (METHOD) - CG
Use the preconditioner (PRECON) -
Use bisection for largest singular value (SIGCMP) -
Matrix and vector norm in use (NORM) -
Distribution of vectors (DISTR) -
Termination criterion (ITERM) -
Tolerance (TOL) -
Maximum number of iterations allowed (MAXITN) - 100
Tolerance for the largest singular value (SIGTOL) -
Monitoring frequency (MONIT) - 0

|
N

= = = H+H Wn 'J

.00D-09

[

.00D-02

Summary of results

Number of iterations carried out (ITN) - 22
Left-hand side of termination criterion (STPLHS)
Right-hand side of termination criterion (STPRHS)
Norm of the matrix of the coefficients (ANORM) -
Largest singular value of (precond.) matrix (SIGMAX)
Number of iterations used to compute SIGMAX (ITS)

Relative error in largest singular value (SIGERR)

.81D-07
.63D-06
.2961E+03
.6844E+00

= O = = N O

.3439E-02
Error norm = 1.0098E-09

Solution vector

-0.0123 0.0247 0.0864 0.1728 0.2840
-0.0864 -0.0494 0.0123 0.0988 0.2099 . 3457 .5062 .6914
0

.4198 0

0

-0.2099 -0.1728 -0.1111 -0.0247 .0864 .2222 .3827 0.5679
0

0

.5802 . 7654

-0.3827 -0.3457 -0.2840 -0.1975 -0.0864 .0494 .2099 .3951
-0.6049 -0.5679 -0.5062 -0.4198 -0.3086 -0.1728 -0.0123 .1728
-0.8765 -0.8395 -0.7778 -0.6914 -0.5802 -0.4444 -0.2840 -0.0988
-1.1975 -1.1605 -1.0988 -1.0123 -0.9012 -0.7654 -0.6049 -0.4198
-1.5679 -1.5309 -1.4691 -1.3827 -1.2716 -1.1358 -0.9753 -0.7901
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