F04EBFP
 NAG Parallel Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check for implementation-dependent details. You are advised to enclose any calls to NAG Parallel Library routines between calls to Z01AAFP and Z01ABFP.

1 Description

F04EBFP calculates the solution of a set of real linear equations

$$
A X=B \quad \text { or } \quad A^{T} X=B
$$

with multiple right-hand sides, using an $L U$ factorization, where A and B are n by n and n by r matrices respectively.

The routine first computes an $L U$ factorization of A as $A=P L U$, where P is a permutation matrix, L is lower triangular with unit diagonal elements and U is upper triangular. The routine uses partial pivoting, with row interchanges. An approximation to X is found by forward and backward substitution.

2 Specification

```
SUBROUTINE F04EBFP(ICNTXT, TRANS, N, NB, A, LDA, NRHS, B, LDB,
1
IPIV, IFAIL)
DOUBLE PRECISION A(LDA,*), B(LDB,*)
INTEGER ICNTXT, N, NB, LDA, NRHS, LDB, IPIV(*), IFAIL
CHARACTER*1 TRANS
```


3 Usage

3.1 Definitions

The following definitions are used in describing the data distribution within this document:

m_{p}	-	the number of rows in the Library Grid.
n_{p}	-	the number of columns in the Library Grid.
p_{r}	the row grid coordinate of the calling processor.	
p_{c}	-	the column grid coordinate of the calling processor. N_{b}
the blocking factor for the distribution of the rows and columns of the		
matrix.		

3.2 Global and Local Arguments

The following global input arguments must have the same value on entry to the routine on each processor and the global output arguments will have the same value on exit from the routine on each processor:

Global input arguments:
TRANS, N, NB, NRHS, IFAIL
Global output arguments:
IFAIL
The remaining arguments are local.

3.3 Distribution Strategy

The matrix A must be partitioned into N_{b} by N_{b} square blocks and stored in an array A in a cyclic two-dimensional block distribution. In this routine, the logical processor $\{0,0\}$ of the processor grid must always possess the first block of the distributed matrix (i.e., $s=0$ in the function numroc). This data distribution is described in more detail in the F04 Chapter Introduction. The right-hand sides of the equation, B, must be stored in the array B , also in a cyclic two-dimensional block distribution.

3.4 Related Routines

This routine assumes that the data has already been correctly distributed, and if this is not the case will fail to produce correct results. The Library provides many support routines for the generation, scattering/gathering and input/output of matrices/vectors in cyclic two-dimensional block form. The following routines may be used in conjunction with F04EBFP:

Real matrix generation: F01ZSFP
Real matrix input:
Real matrix output:

4 Arguments

1: ICNTXT - INTEGER
Local Input
On entry: the Library context, usually returned by a call to the Library Grid initialisation routine Z01AAFP.

Note: the value of ICNTXT must not be changed.
2: TRANS - CHARACTER*1
Global Input
On entry: indicates the form of the equations as follows:
if TRANS $=$ ' N ', then $A X=B$ is solved for X;
if TRANS $=$ ' T ' or ' C ', then $A^{T} X=B$ is solved for X.
Constraint: TRANS $=$ ' N ', ' T ' or ' C '.
3: N - INTEGER
Global Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
4: NB - INTEGER Global Input
On entry: N_{b}, the blocking factor used to distribute the rows and columns of the matrices A and B.

Constraints: $\mathrm{NB} \geq 1$.
5: $\mathrm{A}(\mathrm{LDA}, *)$ - DOUBLE PRECISION array
Local Input/Local Output
Note: the size of the second dimension of the array A must be at least
$\max \left(1, \operatorname{numroc}\left(\mathrm{~N}, \mathrm{NB}, p_{c}, 0, n_{p}\right)\right)$.
On entry: the local part of the matrix A.
On exit: A is overwritten by the factors L and U distributed in the same cyclic two-dimensional block fashion; the unit diagonal elements of L are not stored.

6: LDA - INTEGER
On entry: the first dimension of the array A as declared in the (sub)program from which F04EBFP is called.

Constraint: $\mathrm{LDA} \geq \max \left(1, \operatorname{numroc}\left(\mathrm{~N}, \mathrm{NB}, p_{r}, 0, m_{p}\right)\right)$.

7: NRHS - INTEGER
On entry: r, the number of right-hand sides.
Constraint: $\mathrm{NRHS} \geq 0$.
8: $\quad \mathrm{B}(\mathrm{LDB}, *)$ - DOUBLE PRECISION array
Local Input/Local Output
Note: the size of the second dimension of the array B must be at least $\max \left(1\right.$, numroc(NRHS,NB $\left.\left., p_{c}, 0, n_{p}\right)\right)$.
On entry: the local part of the the n by r right-hand side matrix B.
On exit: the n by r solution matrix X distributed in the same cyclic two-dimensional block distribution.

9: LDB - INTEGER
Local Input
On entry: the first dimension of the array B as declared in the (sub)program from which F04EBFP is called.

Constraint: $\mathrm{LDB} \geq \max \left(1, \operatorname{numroc}\left(\mathrm{~N}, \mathrm{NB}, p_{r}, 0, m_{p}\right)\right)$.
10: $\operatorname{IPIV}(*)$ - INTEGER array
Local Output
Note: the dimension of the array IPIV must be at least NB + numroc(N,NB, $\left.p_{r}, 0, m_{p}\right)$.
On exit: contains the pivot indices. The global row $\operatorname{IPIV}(k)$ of the matrix A was interchanged with the local row k. This array is aligned with the distributed matrix A.

11: IFAIL - INTEGER
Global Input/Global Output
The NAG Parallel Library provides a mechanism, via the routine Z02EAFP, to reduce the amount of parameter validation performed by this routine. For a full description refer to the Z02 Chapter Introduction.
On entry: IFAIL must be set to $0,-1$ or 1 . For users not familiar with this argument (described in the Essential Introduction) the recommended values are:

IFAIL $=0$, if multigridding is not employed;
IFAIL $=-1$, if multigridding is employed.
On exit: IFAIL $=0$ (or -9999 if reduced error checking is enabled) unless the routine detects an error (see Section 5).

5 Errors and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output from the root processor (or processor $\{0,0\}$ when the root processor is not available) on the current error message unit (as defined by X04AAF).

5.1 Full Error Checking Mode Only

IFAIL $=-2000$
The routine has been called with an invalid value of ICNTXT on one or more processors.
IFAIL $=-1000$
The logical processor grid and library mechanism (Library Grid) have not been correctly defined, see Z01AAFP.

IFAIL $=-i$
On entry, the i th argument had an invalid value. This error occurred either because a global argument did not have the same value on all the logical processors (see Section 3.2), or because its value was incorrect. An explanatory message distinguishes between these two cases.

5.2 Any Error Checking Mode

IFAIL $=1$
A diagonal element $u_{i i}$ of U is exactly zero. The factorization has been completed but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of linear equations.

6 Further Comments

The total number of floating-point operations is approximately $\frac{2}{3} n^{3}+2 n^{2} r$.

6.1 Algorithmic Detail

The routine uses a block-partitioned $L U$ factorization with partial pivoting. See Anderson et al. [2] for further details. To compute X, forward and backward substitution are used.

6.2 Parallelism Detail

Each processor column performs an $L U$ factorization with partial pivoting on successive column blocks of the matrix. Details of this factorization and pivoting are passed to all processors which perform the update of the remaining matrix in parallel. Forward and backward substitution are applied to each column block of the right-hand sides in parallel.

6.3 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of equations $(A+E) x=b$, where

$$
\|E\| \leq \epsilon g c(n)\|A\|
$$

$c(n)$ is a modest function of n, ϵ is the machine precision and g is max $\left|u_{i j}\right|$.
If \hat{x} is the true solution, then the computed solution x satisfies the bound

$$
\frac{\|x-\hat{x}\|}{\|x\|} \leq g c(n) \operatorname{cond}(A) \epsilon
$$

where $\operatorname{cond}(A)=\|A\| \cdot\left\|A^{-1}\right\|$.

7 References

[1] Golub G H and van Loan C F (1996) Matrix Computations Johns Hopkins University Press (3rd Edition), Baltimore
[2] Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia

8 Example

To solve the system of equations $A X=B$, where

$$
A=\left(\begin{array}{rrrr}
1.80 & 2.88 & 2.05 & -0.89 \\
5.25 & -2.95 & -0.95 & -3.80 \\
1.58 & -2.69 & -2.90 & -1.04 \\
-1.11 & -0.66 & -0.59 & 0.80
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
9.52 & 18.47 \\
24.35 & 2.25 \\
0.77 & -13.28 \\
-6.22 & -6.21
\end{array}\right)
$$

The example uses a 2 by 2 logical processor grid and a block size of 2 for both A and B.
Note: the listing of the Example Program presented below does not give a full pathname for the data file being opened, but in general the user must give the full pathname in this and any other OPEN statement.

8.1 Example Text

* F04EBFP Example Program Text
* NAG Parallel Library Release 2. NAG Copyright 1996.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

INTEGER NB PARAMETER (NB=2)
INTEGER NMAX, LDA, LDB, NRHMAX, LW
PARAMETER (NMAX=8,LDA=NMAX,LDB=NMAX,NRHMAX=2,LW=NMAX)

* .. Local Scalars ..

INTEGER ICNTXT, IFAIL, MP, N, NP, NRHS
LOGICAL ROOT
CHARACTER TRANS
CHARACTER*80 FORMAT

* .. Local Arrays ..

DOUBLE PRECISION A(LDA,NMAX), B(LDB, NRHMAX), WORK(LW)
INTEGER IPIV (NMAX+NB)

* .. External Functions ..

LOGICAL Z01ACFP
EXTERNAL Z01ACFP

* .. External Subroutines ..

EXTERNAL F04EBFP, X04BGFP, X04BHFP, Z01AAFP, Z01ABFP

* .. Executable Statements ..

ROOT = Z01ACFP()
IF (ROOT) WRITE (NOUT,*) 'F04EBFP Example Program Results'
*
$\mathrm{MP}=2$
$N P=2$
IFAIL $=0$
*

* Set up Library Grid

CALL Z01AAFP (ICNTXT, MP,NP,IFAIL)
*
OPEN (NIN,FILE='f04ebfpe.d')

* Skip heading in data file

READ (NIN,*)
READ (NIN,*) N, NRHS, FORMAT
IF (N.LE.NMAX .AND. NRHS.LE.NRHMAX) THEN

IFAIL = 0
*

* \quad Read in matrices A and B
* CALL X04BGFP(ICNTXT,NIN,N,N,NB,A,LDA,IFAIL) CALL X04BGFP(ICNTXT,NIN,N,NRHS,NB,B,LDB,IFAIL)
* TRANS $={ }^{\prime}{ }^{\prime}{ }^{\prime}$
* CALL F04EBFP (ICNTXT,TRANS,N,NB,A,LDA,NRHS,B,LDB,IPIV,IFAIL)
*
* Print solution(s)
* IF (ROOT) THEN

WRITE (NOUT,*)
WRITE (NOUT,*) 'Solution(s)'
WRITE (NOUT,*)
END IF
CALL X04BHFP(ICNTXT,NOUT,N,NRHS,NB,B,LDB,FORMAT,WORK,IFAIL)
*
END IF

CLOSE (NIN)

IFAIL = 0
CALL Z01ABFP(ICNTXT,'N',IFAIL)
*
STOP
END

8.2 Example Data

F04EBFP Example Program Data				
42 '(4F12.4)'				:Values of N, NRHS and FORMAT
1.80	2.88	2.05	-0.89	
5.25	-2.95	-0.95	-3.80	
1.58	-2.69	-2.90	-1.04	
-1.11	-0.66	-0.59	0.80	:End of matrix A
9.52	18.47			
24.35	2.25			
0.77	-13.28			
-6.22	-6.21			:End of matrix B

8.3 Example Results

F04EBFP Example Program Results
Solution(s)

1.0000	3.0000
-1.0000	2.0000
3.0000	4.0000
-5.0000	1.0000

