
F01 – Matrix Operations and Distribution

F01WUFP

NAG Parallel Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check for implementation-dependent
details. You are advised to enclose any calls to NAG Parallel Library routines between calls to Z01AAFP and Z01ABFP.

1 Description

F01WUFP distributes an m by n complex matrix As available in its natural form on a (source) processor
to the processors on the Library Grid in the cyclic two-dimensional block format. The distributed version
of B may be regarded as a submatrix of a larger distributed matrix A, i.e.,

B(1 : m, 1 : n) ≡ A(iA : iA + m − 1, jA : jA + n − 1).

Note: if i = j = 1, m = mA and n = nA, then B = A.

This routine is useful for distributing matrices in a form required by (ScaLAPACK) routines in Chapters
F07 and F08.

2 Specification

SUBROUTINE F01WUFP(M, N, A, IA, JA, IDESCA, IS, JS, B, LDB, WORK,
1 LWORK, IFAIL)
COMPLEX*16 A(*), B(LDB,*), WORK(*)
INTEGER M, N, IA, JA, IDESCA(*), IS, JS, LDB, LWORK,
1 IFAIL

3 Usage
3.1 Definitions

The following definitions are used in describing the data distribution within this document:

mp – the number of rows in the Library Grid.
np – the number of columns in the Library Grid.
pr – the row grid coordinate of the calling processor.
pc – the column grid coordinate of the calling processor.
is – the row grid coordinate of the source processor.
js – the column grid coordinate of the source processor.
MX

b – the blocking factor for the distribution of the rows of a matrix X .
NX

b – the blocking factor for the distribution of the columns of a matrix X .
numroc(α,b�,q,s,k) – a function which gives the number of rows or columns of a distributed

matrix owned by the processor with the row or column coordinate q (pr

or pc), where α is the total number of rows or columns of the matrix,
b� is the blocking factor used (MX

b or NX
b), s is the row or column

coordinate of the processor that possesses the first row or column of the
distributed matrix and k is either mp or np. The Library provides the
function Z01CAFP (NUMROC) for the evaluation of this function.

3.2 Global and Local Arguments

The following global input arguments must have the same value on entry to the routine on each processor
and the global output arguments will have the same value on exit from the routine on each processor:

Global input arguments: M, N, IA, JA, IS, JS, IDESCA(1), IDESCA(3:8), IFAIL

Global output arguments: IFAIL

The remaining arguments are local.

[NP3344/3/pdf] F01WUFP.1

F01WUFP NAG Parallel Library Manual

3.3 Distribution Strategy

On exit, the matrix A will be nominally partitioned into MA
b by NA

b rectangular blocks and stored in local
arrays A in a cyclic two-dimensional block distribution. However, only the elements of the submatrix As

are referenced by this routine; the other elements of the matrix A are untouched. This data distribution
is described in more detail in the F07 and F08 Chapter Introductions.

4 Arguments

1: M — INTEGER Global Input

On entry: m, the number of rows of the matrix B.

Constraint: 0 ≤ M ≤ IDESCA(3).

2: N — INTEGER Global Input

On entry: n, the number of columns of the matrix B.

Constraint: 0 ≤ N ≤ IDESCA(4).

3: A(∗) — COMPLEX*16 array Local Output

Note: array A is formally defined as a vector. However, you may find it more convenient to consider
A as a two-dimensional array of dimension (IDESCA(9),γ), where
γ ≥ numroc(JA+N−1,IDESCA(6),pc,IDESCA(8),np).

On exit: the relevant parts of the distributed matrix A.

4: IA — INTEGER Global Input

On entry: iA, the row index of A that identifies the first row of the submatrix As.

Constraint: 1 ≤ IA ≤ IDESCA(3) − M + 1.

5: JA — INTEGER Global Input

On entry: jA, the column index of A that identifies the first column of the submatrix As.

Constraint: 1 ≤ JA ≤ IDESCA(4) − N + 1.

6: IDESCA(∗) — INTEGER array Local Input

Note: the dimension of the array IDESCA must be at least 9.

Distribution: the array elements IDESCA(1) and IDESCA(3),. . .,IDESCA(8) must be global to
the processor grid and the elements IDESCA(2) and IDESCA(9) are local to each processor.

On entry: the description array for the matrix A. This array must contain details of the distribution
of the matrix A and the logical processor grid.

IDESCA(1), the descriptor type. For this routine, which uses a cyclic two-dimensional block
distribution, IDESCA(1) = 1;
IDESCA(2), the Library context, usually returned by a call to the Library Grid initialisation
routine Z01AAFP;
IDESCA(3), the number of rows, mA, of the matrix A;
IDESCA(4), the number of columns, nA, of the matrix A;
IDESCA(5), the blocking factor, MA

b , used to distribute the rows of the matrix A;
IDESCA(6), the blocking factor, NA

b , used to distribute the columns of the matrix A;
IDESCA(7), the processor row index over which the first row of the matrix A is distributed;
IDESCA(8), the processor column index over which the first column of the matrix A is
distributed;
IDESCA(9), the leading dimension of the conceptual two-dimensional array A.

F01WUFP.2 [NP3344/3/pdf]

F01 – Matrix Operations and Distribution F01WUFP

Constraints:

IDESCA(1) = 1
IDESCA(3) ≥ 0; IDESCA(4) ≥ 0;
IDESCA(5) ≥ 1; IDESCA(6) ≥ 1;
0 ≤ IDESCA(7) ≤ mp − 1; 0 ≤ IDESCA(8) ≤ np − 1;
IDESCA(9) ≥ max(1,numroc(IDESCA(3),IDESCA(5),pr,IDESCA(7),mp)).

7: IS — INTEGER Global Input
8: JS — INTEGER Global Input

On entry: {is, js}, the coordinate of the (source) processor from which B is distributed.

Constraints:

0 ≤ is ≤ mp − 1;
0 ≤ js ≤ np − 1.

9: B(LDB,*) — COMPLEX*16 array Local Input

Note: the size of the second dimension of the array B must be at least max(1,N).

On entry: matrix B to be distributed. This array is only referenced on the source processor as
defined by the processor coordinate {is, js}.

10: LDB — INTEGER Local Input

Note: B and LDB are referenced only by the processor which has the coordinate {is, js}.
On entry: the size of the first dimension of the array B as declared in the (sub)program from which
F01WUFP is called.

Constraints:

LDB ≥ max(1,M) on the source processor;
LDB ≥ 1 otherwise.

11: WORK(∗) — COMPLEX*16 array Local Workspace/Global Output

Note: the dimension of the array WORK must be at least max(3,LWORK). WORK is used as a
workspace only by the (source) processor which has the coordinate {is, js}.
On exit: WORK(i) = li, i = 1, 2, 3. See LWORK for the definitions of li.

12: LWORK — INTEGER Local Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F01WUFP
is called. The minimum requirement for LWORK is max(4,min(l1,l2)), but the higher value
max(4,l3) is recommended for higher efficiency where

l1 = max
i=0,...,mp−1

[α1(i) − α2(i)]

α1(i) = numroc(M+IA−1,IDESCA(5),i,IDESCA(7),mp)
α2(i) = numroc(IA−1,IDESCA(5),i,IDESCA(7),mp)
l2 = max

j=0,...,np−1
[β1(j) − β2(j)]

β1(j) = numroc(N+JA−1,IDESCA(6),j,IDESCA(8),np)
β2(j) = numroc(JA−1,IDESCA(6),j,IDESCA(8),np)
l3 = max

i=0,...,mp−1
max

j=0,...,np−1
[α1(i) − α2(i)][β1(j) − β2(j)]

Note: if LWORK = −1, then a workspace query for LWORK is assumed; the routine only calculates
the required minimum sizes of the array WORK as defined by l1, l2 and l3. These values are returned
in the real parts of the first three entries of the array WORK.

Constraint: LWORK ≥ max[4,min(l1,l2)] or LWORK = −1.

[NP3344/3/pdf] F01WUFP.3

F01WUFP NAG Parallel Library Manual

13: IFAIL — INTEGER Global Input/Global Output

The NAG Parallel Library provides a mechanism, via the routine Z02EAFP, to reduce the amount
of parameter validation performed by this routine. For a full description refer to the Z02 Chapter
Introduction.

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this argument (described in
the Essential Introduction) the recommended values are:

IFAIL = 0, if multigridding is not employed;
IFAIL = −1, if multigridding is employed.

On exit: IFAIL = 0 (or −9999 if reduced error checking is enabled) unless the routine detects an
error (see Section 5).

5 Errors and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output from the root processor (or processor
{0,0} when the root processor is not available) on the current error message unit (as defined by X04AAF).

5.1 Full Error Checking Mode Only

IFAIL = −2000

The routine has been called with a value of ICNTXT (stored in IDESCA(2)) which was not returned
by a call to Z01AAFP on one or more processors.

IFAIL = −1000

The utility routine Z01AAFP has not been called to define the logical processor grid and initialise
the internal variables used by the Library.

IFAIL < 0

On entry, one of the arguments was invalid:

if the kth argument is a scalar IFAIL = −k;
if the kth argument is an array and its jth element is invalid, IFAIL = −(100 × k + j).

This error occured either because a global argument did not have the same value on all logical
processors, or because its value on one or more processors was incorrect. An explanatory message
distinguishes between these two cases.

6 Further Comments
6.1 Algorithmic Detail

The performance of the algorithm depends upon the size of LWORK. The critical values of LWORK
are li, i = 1, 2, 3. See LWORK for the definitions of li. For higher efficiency, LWORK should be set to
max(l3,4) (or greater). However, this routine will work with a workspace size of max(4,min(l1,l2)). Note
that l3 ≥ max(l1,l2).

6.2 Parallelism Detail

The source processor sequentially distributes B to other processors.

7 References

[1] Blackford L S, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon I, Dongarra J, Hammarling
S, Henry G, Petitet A, Stanley K, Walker D and Whaley R C (1997) ScaLAPACK Users’
Guide SIAM 3600 University City Science Center, Philadelpia, PA 19104-2688, USA. URL:
http://www.netlib.org/scalapack/slug/scalapack slug.html

F01WUFP.4 [NP3344/3/pdf]

F01 – Matrix Operations and Distribution F01WUFP

8 Example

The example program illustrates the distribution of a matrix As.

8.1 Example Text

* F01WUFP Example Program Text
* NAG Parallel Library Release 3. NAG Copyright 1999.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER M, N
PARAMETER (M=10,N=3)
INTEGER NB
PARAMETER (NB=3)
INTEGER DT, NA
PARAMETER (DT=1,NA=25)
INTEGER LDA, TDA, LWORK
PARAMETER (LDA=NA,TDA=NA,LWORK=LDA)

* .. Local Scalars ..
INTEGER I, I1, I2, I3, IA, ICNTXT, IFAIL, IS, J, JA, JS,

+ MP, NP
LOGICAL ROOT

* .. Local Arrays ..
COMPLEX*16 A(LDA,TDA), B(LDA,TDA), C(LDA,TDA), WORK(LWORK)
INTEGER IDESCA(9)

* .. External Functions ..
LOGICAL Z01ACFP
EXTERNAL Z01ACFP

* .. External Subroutines ..
EXTERNAL F01WGFP, F01WUFP, Z01AAFP, Z01ABFP

* .. Intrinsic Functions ..
INTRINSIC CMPLX, DBLE, NINT

* .. Executable Statements ..
ROOT = Z01ACFP()
IF (ROOT) THEN

WRITE (NOUT,*) ’F01WUFP Example Program Results’
WRITE (NOUT,*)

END IF
*

MP = 2
NP = 2
IFAIL = 0
CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)

*
* Generate a matrix on the root processor
*

IF (ROOT) THEN
DO 20 J = 1, N

DO 20 I = 1, M
B(I,J) = CMPLX(DBLE(I),DBLE(J))

20 CONTINUE
END IF

*
* Set up the indices of the first row and column and the descriptor
* for distributed matrix
*

IA = 1

[NP3344/3/pdf] F01WUFP.5

F01WUFP NAG Parallel Library Manual

JA = 1
IDESCA(1) = DT
IDESCA(2) = ICNTXT
IDESCA(3) = NA
IDESCA(4) = NA
IDESCA(5) = NB
IDESCA(6) = NB
IDESCA(7) = 1
IDESCA(8) = 1
IDESCA(9) = LDA

*
* Distribute the 3rd column of the matrix from the root processor
*

IFAIL = 0
IS = 0
JS = 0
CALL F01WUFP(M,1,A,IA,JA,IDESCA,IS,JS,B(1,3),LDA,WORK,LWORK,IFAIL)

*
* Gather this column of the matrix back to the root processor as
* the 3rd column of the matrix C, and print the column
*

CALL F01WGFP(M,1,A,IA,JA,IDESCA,IS,JS,C(1,3),LDA,WORK,LWORK,IFAIL)
*

IF (ROOT) THEN
WRITE (NOUT,’(1X,"The third column of the matrix",/)’)
DO 40 I = 1, M

WRITE (NOUT,’(1X,("(",F4.1,1X,",",F4.1,")"))’) C(I,3)
40 CONTINUE

WRITE (NOUT,*)
END IF

*
* Distribute the 2nd row of the matrix from the root processor
*

IFAIL = 0
IS = 0
JS = 0
CALL F01WUFP(1,N,A,IA,JA,IDESCA,IS,JS,B(2,1),LDA,WORK,LWORK,IFAIL)

*
* Gather this row of the matrix back to the root processor as the
* 2nd row of the matrix C, and print the row
*

CALL F01WGFP(1,N,A,IA,JA,IDESCA,IS,JS,C(2,1),LDA,WORK,LWORK,IFAIL)
*

IF (ROOT) THEN
WRITE (NOUT,’(1X,"The second row of the matrix",/)’)
WRITE (NOUT,’(1X,3("(",F4.1,1X,",",F4.1,")",3X))’)

+ (C(2,J),J=1,N)
WRITE (NOUT,*)

END IF
*
* Distribute the whole matrix from the root processor
*

IFAIL = 0
IS = 0
JS = 0
CALL F01WUFP(M,N,A,IA,JA,IDESCA,IS,JS,B,LDA,WORK,LWORK,IFAIL)

*
* Store the values of l(1), l(2) and l(3) in I1, I2 and I3

F01WUFP.6 [NP3344/3/pdf]

F01 – Matrix Operations and Distribution F01WUFP

*
I1 = NINT(DBLE(WORK(1)))
I2 = NINT(DBLE(WORK(2)))
I3 = NINT(DBLE(WORK(3)))

*
* Gather the matrix back to the root processor as the matrix C, and
* print the matrix
*

CALL F01WGFP(M,N,A,IA,JA,IDESCA,IS,JS,C,LDA,WORK,LWORK,IFAIL)
*

IF (ROOT) THEN
WRITE (NOUT,’(1X,"The matrix",/)’)
DO 60 I = 1, M

WRITE (NOUT,’(1X,3("(",F4.1,1X,",",F4.1,")",3X))’)
+ (C(I,J),J=1,N)

60 CONTINUE
WRITE (NOUT,*)

END IF
*
* Print the values l(1), l(2) and l(3) that determine the
* recommended dimension of WORK
*

IF (ROOT) THEN
WRITE (NOUT,

+ ’(1X,"The values of l(1), l(2) and l(3) are:",/)’)
WRITE (NOUT,’(1X,"Real part of WORK(1) = ",I3)’) I1
WRITE (NOUT,’(1X,"Real part of WORK(2) = ",I3)’) I2
WRITE (NOUT,’(1X,"Real part of WORK(3) = ",I3)’) I3

END IF
*

IFAIL = 0
CALL Z01ABFP(ICNTXT,’N’,IFAIL)

*
STOP
END

8.2 Example Data

None.

8.3 Example Results

F01WUFP Example Program Results

The third column of the matrix

(1.0 , 3.0)
(2.0 , 3.0)
(3.0 , 3.0)
(4.0 , 3.0)
(5.0 , 3.0)
(6.0 , 3.0)
(7.0 , 3.0)
(8.0 , 3.0)
(9.0 , 3.0)
(10.0 , 3.0)

[NP3344/3/pdf] F01WUFP.7

F01WUFP NAG Parallel Library Manual

The second row of the matrix

(2.0 , 1.0) (2.0 , 2.0) (2.0 , 3.0)

The matrix

(1.0 , 1.0) (1.0 , 2.0) (1.0 , 3.0)
(2.0 , 1.0) (2.0 , 2.0) (2.0 , 3.0)
(3.0 , 1.0) (3.0 , 2.0) (3.0 , 3.0)
(4.0 , 1.0) (4.0 , 2.0) (4.0 , 3.0)
(5.0 , 1.0) (5.0 , 2.0) (5.0 , 3.0)
(6.0 , 1.0) (6.0 , 2.0) (6.0 , 3.0)
(7.0 , 1.0) (7.0 , 2.0) (7.0 , 3.0)
(8.0 , 1.0) (8.0 , 2.0) (8.0 , 3.0)
(9.0 , 1.0) (9.0 , 2.0) (9.0 , 3.0)
(10.0 , 1.0) (10.0 , 2.0) (10.0 , 3.0)

The values of l(1), l(2) and l(3) are:

Real part of WORK(1) = 6
Real part of WORK(2) = 3
Real part of WORK(3) = 18

F01WUFP.8 (last) [NP3344/3/pdf]

