F01WAFP
 NAG Parallel Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check for implementation-dependent details. You are advised to enclose any calls to NAG Parallel Library routines between calls to Z01AAFP and Z01ABFP.

1 Description

F01WAFP gathers an m by n real distributed matrix A_{s} to a user specified logical processor (the destination processor) and stores it in the natural (non-distributed) format. The matrix A_{s} can be considered as a submatrix of a larger m_{A} by n_{A} distributed matrix A, i.e.,

$$
A_{s}(1: m, 1: n) \equiv A\left(i_{A}: i_{A}+m-1, j_{A}: j_{A}+n-1\right)
$$

Note: if $i=j=1, m=m_{A}$ and $n=n_{A}$, then $A_{s}=A$.
It is assumed that the matrix A has been distributed on a logical grid of processors in the cyclic twodimensional block format. However, only the elements of the submatrix A_{s} are referenced by this routine.

It is also possible to gather copies of the matrix A_{s} on processors which are either on a particular row or column of the processor grid. Alternatively, all processors on the Library Grid can receive a copy of A_{s}.
This routine is useful for gathering full or partial solutions which have been computed using (ScaLAPACK) routines in the F07 and F08 Chapter Introductions.

2 Specification

```
    SUBROUTINE F01WAFP(M, N, A, IA, JA, IDESCA, ID, JD, B, LDB, WORK,
1
    LWORK, IFAIL)
    DOUBLE PRECISION A(*), B(LDB,*), WORK(*)
    INTEGER M, N, IA, JA, IDESCA(*), ID, JD, LDB, LWORK,
1 IFAIL
```


3 Usage

3.1 Definitions

The following definitions are used in describing the data distribution within this document:

m_{p}	-	the number of rows in the Library Grid.
n_{p}	-	the number of columns in the Library Grid.
p_{r}	-	the row grid coordinate of the calling processor.
p_{c}	-	the column grid coordinate of the calling processor.
i_{d}	-	the row grid coordinate of the destination processor.
j_{d}	-	the column grid coordinate of the destination processor.
M_{b}^{X}	-	the blocking factor for the distribution of the rows of a matrix X.
N_{b}^{X}	-	the blocking factor for the distribution of the columns of a matrix X.
numroc $\left(\alpha, b_{\ell}, q, s, k\right)$	-	a function which gives the number of rows or columns of a distributed matrix owned by the processor with the row or column coordinate q (p_{r} or p_{c}), where α is the total number of rows or columns of the matrix, b_{ℓ} is the blocking factor used $\left(M_{b}^{X}\right.$ or $\left.N_{b}^{X}\right), s$ is the row or column coordinate of the processor that possesses the first row or column of the distributed matrix and k is either m_{p} or n_{p}. The Library provides the function Z01CAFP (NUMROC) for the evaluation of this function.

3.2 Global and Local Arguments

The following global input arguments must have the same value on entry to the routine on each processor and the global output arguments will have the same value on exit from the routine on each processor:

Global input arguments:
Global output arguments:

M, N, IA, JA, ID, JD, IDESCA(1), IDESCA(3:8), IFAIL
IFAIL

The remaining arguments are local.

3.3 Distribution Strategy

It is assumed that the matrix A has been partitioned into M_{b}^{A} by N_{b}^{A} rectangular blocks and stored in local arrays A in a cyclic two-dimensional block distribution. That is, the matrix A or at least its submatrix A_{s} is already available as a distributed matrix on the Library Grid. This data distribution is described in more detail in the F07 and F08 Chapter Introductions.

4 Arguments

1: M — INTEGER
Global Input
On entry: m, the number of rows of the matrix A_{s}.
Constraint: $0 \leq \mathrm{M} \leq \operatorname{IDESCA}(3)$.
2: N - INTEGER
Global Input
On entry: n, the number of columns of the matrix A_{s}.
Constraint: $0 \leq \mathrm{N} \leq \operatorname{IDESCA}(4)$.
3: $\quad \mathrm{A}(*)$ - DOUBLE PRECISION array
Local Input
Note: array A is formally defined as a vector. However, you may find it more convenient to consider A as a two-dimensional array of dimension $(\operatorname{IDESCA}(9), \gamma)$, where
$\gamma \geq$ numroc (JA $\left.+\mathrm{N}-1, \operatorname{IDESCA}(6), p_{c}, \operatorname{IDESCA}(8), n_{p}\right)$.
On entry: the relevant parts of the distributed matrix A.
4: IA - INTEGER
Global Input
On entry: i_{A}, the row index of A that identifies the first row of the submatrix A_{s}.
Constraint: $1 \leq \mathrm{IA} \leq \operatorname{IDESCA}(3)-\mathrm{M}+1$.
5: JA - INTEGER
Global Input
On entry: j_{A}, the column index of A that identifies the first column of the submatrix A_{s}.
Constraint: $1 \leq \mathrm{JA} \leq \operatorname{IDESCA}(4)-\mathrm{N}+1$.
6: $\operatorname{IDESCA}(*)$ - INTEGER array
Note: the dimension of the array IDESCA must be at least 9 .
Distribution: the array elements $\operatorname{IDESCA}(1)$ and $\operatorname{IDESCA}(3), \ldots, \operatorname{IDESCA}(8)$ must be global to the processor grid and the elements $\operatorname{IDESCA}(2)$ and $\operatorname{IDESCA}(9)$ are local to each processor.

On entry: the description array for the matrix A. This array must contain details of the distribution of the matrix A and the logical processor grid.

IDESCA(1), the descriptor type. For this routine, which uses a cyclic two-dimensional block distribution, $\operatorname{IDESCA}(1)=1$;
IDESCA(2), the Library context, usually returned by a call to the Library Grid initialisation routine Z01AAFP;
$\operatorname{IDESCA}(3)$, the number of rows, m_{A}, of the matrix A;
$\operatorname{IDESCA}(4)$, the number of columns, n_{A}, of the matrix A;
IDESCA(5), the blocking factor, M_{b}^{A}, used to distribute the rows of the matrix A;
$\operatorname{IDESCA}(6)$, the blocking factor, N_{b}^{A}, used to distribute the columns of the matrix A;
$\operatorname{IDESCA}(7)$, the processor row index over which the first row of the matrix A is distributed; IDESCA(8), the processor column index over which the first column of the matrix A is distributed;

IDESCA(9), the leading dimension of the conceptual two-dimensional array A.

Constraints:

$\operatorname{IDESCA}(1)=1$
$\operatorname{IDESCA}(3) \geq 0 ; \operatorname{IDESCA}(4) \geq 0 ;$
$\operatorname{IDESCA}(5) \geq 1 ; \operatorname{IDESCA}(6) \geq 1$;
$0 \leq \operatorname{IDESCA}(7) \leq m_{p}-1 ; 0 \leq \operatorname{IDESCA}(8) \leq n_{p}-1$;
$\operatorname{IDESCA}(9) \geq \max \left(1, \operatorname{numroc}\left(\operatorname{IDESCA}(3), \operatorname{IDESCA}(5), p_{r}, \operatorname{IDESCA}(7), m_{p}\right)\right)$.

7: ID - INTEGER Global Input
8: JD - INTEGER Global Input
On entry: $\left\{i_{d}, j_{d}\right\}$, the coordinate of the (destination) processor(s) which will gather A_{s}.
If ID $=-1$, then all processors in column j_{d} of the grid will receive a copy of A_{s}.
If $\mathrm{JD}=-1$, then all processors in row i_{d} of the grid will receive a copy of A_{s}.
If $\mathrm{ID}=\mathrm{JD}=-1$ then all processors of the grid will receive a copy of A_{s}.
Constraints:
$0 \leq \mathrm{ID} \leq m_{p}-1$ or $\mathrm{ID}=-1$;
$0 \leq \mathrm{JD} \leq n_{p}-1$ or $\mathrm{JD}=-1$.
9: $\mathrm{B}\left(\mathrm{LDB},{ }^{*}\right)$ - DOUBLE PRECISION array Local Output
Note: the size of the second dimension of the array B must be at least max $(1, \mathrm{~N})$ on the destination processor(s).

On exit: a copy of the matrix A_{s} on the destination processor(s) as defined by the processor coordinate $\{$ ID,JD $\}$.

10: LDB - INTEGER
Local Input
On entry: the size of the first dimension of the array B as declared in the (sub)program from which F01WAFP is called.

Constraint:
$\mathrm{LDB} \geq \max (1, m)$; on destination processor(s).
$\mathrm{LDB} \geq 1$ otherwise.

11: $\operatorname{WORK}(*)$ - DOUBLE PRECISION array Local Workspace/Global Output
Note: the dimension of the array WORK must be at least max $(3$, LWORK $)$. WORK is used as workspace only by the processor which has the coordinate $\{$ ID, JD $\}$ where ID $\neq-1$ and JD $\neq-1$. If ID $=-1$ and JD $\neq-1$ then the coordinate of the processor where WORK is referenced is $\{0, \mathrm{JD}\}$. The second coordinate JD is interpreted in a similar way. If ID $=\mathrm{JD}=-1$ then the coordinate of the processor where WORK is referenced is $\{0,0\}$..
On exit: $\operatorname{WORK}(i)=l_{i}, i=1,2,3$. See LWORK for the definitions of l_{i}.
12: LWORK - INTEGER
Local Input
On entry: the dimension of the array WORK as declared in the (sub) program from which F01WAFP is called. The minimum requirement for LWORK is $\max \left(4, \min \left(l_{1}, l_{2}\right)\right)$, but the higher value $\max \left(4, l_{3}\right)$ is recommended for higher efficiency where

```
\(l_{1} \quad=\quad \max _{i=0, \ldots, m_{p}-1}\left[\alpha_{1}(i)-\alpha_{2}(i)\right]\)
\(\alpha_{1}(i)=\) numroc \(\left(\mathrm{M}+\mathrm{IA}-1, \operatorname{IDESCA}(5), i, \operatorname{IDESCA}(7), m_{p}\right)\)
\(\alpha_{2}(i)=\) numroc(IA-1,IDESCA(5), \(\left.i, \operatorname{IDESCA}(7), m_{p}\right)\)
\(l_{2}=\max _{j=0, \ldots, n_{p}-1}\left[\beta_{1}(j)-\beta_{2}(j)\right]\)
\(\beta_{1}(j)=\) numroc \(\left(\mathrm{N}+\mathrm{JA}-1, \operatorname{IDESCA}(6), j, \operatorname{IDESCA}(8), n_{p}\right)\)
\(\beta_{2}(j)=\) numroc(JA-1,IDESCA(6), \(\left.j, \operatorname{IDESCA}(8), n_{p}\right)\)
\(l_{3} \quad=\quad \max _{i=0, \ldots, m_{p}-1} \max _{j=0, \ldots, n_{p}-1}\left[\alpha_{1}(i)-\alpha_{2}(i)\right]\left[\beta_{1}(j)-\beta_{2}(j)\right]\)
```

Note: if LWORK $=-1$, then a workspace query for LWORK is assumed; the routine only calculates the required minimum sizes of the array WORK as defined by l_{1}, l_{2} and l_{3}. These values are returned in the first three elements of the array WORK.
Constraint: $\mathrm{LWORK} \geq \max \left[4, \min \left(l_{1}, l_{2}\right)\right]$ or $\operatorname{LWORK}=-1$.
13: IFAIL - INTEGER
Global Input/Global Output
The NAG Parallel Library provides a mechanism, via the routine Z02EAFP, to reduce the amount of parameter validation performed by this routine. For a full description refer to the Z02 Chapter Introduction.
On entry: IFAIL must be set to $0,-1$ or 1 . For users not familiar with this argument (described in the Essential Introduction) the recommended values are:

IFAIL $=0$, if multigridding is not employed;
IFAIL $=-1$, if multigridding is employed.
On exit: IFAIL $=0$ (or -9999 if reduced error checking is enabled) unless the routine detects an error (see Section 5).

5 Errors and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output from the root processor (or processor $\{0,0\}$ when the root processor is not available) on the current error message unit (as defined by X04AAF).

5.1 Full Error Checking Mode Only

IFAIL $=-2000$

The routine has been called with a value of ICNTXT (stored in IDESCA(2)) which was not returned by a call to Z01AAFP on one or more processors.

IFAIL $=-1000$

The utility routine Z01AAFP has not been called to define the logical processor grid and initialise the internal variables used by the Library.

IFAIL <0

On entry, one of the arguments was invalid:
if the k th argument is a scalar IFAIL $=-k$;
if the k th argument is an array and its j th element is invalid, IFAIL $=-(100 \times k+j)$.
This error occured either because a global argument did not have the same value on all logical processors, or because its value on one or more processors was incorrect. An explanatory message distinguishes between these two cases.

6 Further Comments

6.1 Algorithmic Detail

The performance of the algorithm depends upon the size of LWORK. The critical values of LWORK are $l_{i}, i=1,2,3$. See LWORK for the definitions of l_{i}. For higher efficiency, LWORK should be set to $\max \left(l_{3}, 4\right)$ (or greater). However, this routine will work with a workspace size of $\max \left(4, \min \left(l_{1}, l_{2}\right)\right)$. Note that $l_{3} \geq \max \left(l_{1}, l_{2}\right)$.

6.2 Parallelism Detail

The destination processor sequentially gathers the relevant parts of A_{s} from other processors.

7 References

[1] Blackford L S, Choi J, Cleary A, D'Azevedo E, Demmel J, Dhillon I, Dongarra J, Hammarling S, Henry G, Petitet A, Stanley K, Walker D and Whaley R C (1997) ScaLAPACK Users' Guide SIAM 3600 University City Science Center, Philadelpia, PA 19104-2688, USA. URL: http://www.netlib.org/scalapack/slug/scalapack_slug.html

8 Example

The example program illustrates the gathering of a matrix A_{s} that has been generated using routine F01ZQFP.

8.1 Example Text

```
* F01WAFP Example Program Text
* NAG Parallel Library Release 3. NAG Copyright 1999.
* .. Parameters ..
    INTEGER NOUT
    PARAMETER (NOUT=6)
    INTEGER M, N
    PARAMETER (M=10,N=5)
    INTEGER DT, NB
    PARAMETER (DT=1,NB=3)
    INTEGER NA
    PARAMETER (NA=25)
    INTEGER LDA, TDA, LWORK
    PARAMETER (LDA=NA,TDA=NA,LWORK=LDA)
* .. Local Scalars ..
    INTEGER I, IA, IAA, ICNTXT, IFAIL, IR, J, JA, JAA, JR,
    + MP, NP
    LOGICAL ROOT
* .. Local Arrays ..
    DOUBLE PRECISION A(LDA,TDA), B(LDA,TDA), WORK(LWORK)
    INTEGER IDESCA(9)
* .. External Functions ..
    LOGICAL Z01ACFP
    EXTERNAL Z01ACFP
* .. External Subroutines ..
    EXTERNAL F01WAFP, F01ZQFP, GMATA, Z01AAFP, Z01ABFP
* .. Intrinsic Functions ..
    INTRINSIC NINT
* .. Executable Statements ..
    ROOT = Z01ACFP()
    IF (ROOT) THEN
        WRITE (NOUT,*) 'F01WAFP Example Program Results'
        WRITE (NOUT,*)
    END IF
    MP = 2
    NP = 2
    IFAIL = 0
    CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
```

* Set up and generate an m by matrix starting at row index 1 and
* column index 1
*

$I A=1$
$\mathrm{JA}=1$
$\operatorname{IDESCA}(1)=\mathrm{DT}$
$\operatorname{IDESCA}(2)=$ ICNTXT
$\operatorname{IDESCA}(3)=N A$
IDESCA (4) = NA
IDESCA (5) = NB
$\operatorname{IDESCA}(6)=\mathrm{NB}$
$\operatorname{IDESCA}(7)=1$
$\operatorname{IDESCA}(8)=1$
IDESCA (9) = LDA
CALL F01ZQFP (GMATA, M, N, A, IA , JA, IDESCA, IFAIL)
*

* Gather the element $(3,4)$ of the matrix to processor $(0,0)$ and
* print the element on the root processor
*

IFAIL $=0$
IR $=0$
$\mathrm{JR}=0$
IAA $=(I A-1)+3$
$\mathrm{JAA}=(\mathrm{JA}-1)+4$
CALL F01WAFP (1, 1, A, IAA , JAA, IDESCA, IR , JR, B, LDA , WORK, LWORK, IFAIL)
IF (ROOT) THEN
WRITE (NOUT,'(1X,"The $(3,4)$ element of the matrix",/)')
WRITE (NOUT,' ($1 \mathrm{X}, \mathrm{F} 8.4$)') $\mathrm{B}(1,1)$
WRITE (NOUT,*)
END IF

* Gather the 3rd column of the matrix to processor row 0 and print
* the column on the root processor
*

IFAIL $=0$
IR $=0$
$\mathrm{JR}=-1$
IAA $=I A$
JAA $=(\mathrm{JA}-1)+3$
CALL F01WAFP (M, 1, A, IAA , JAA , IDESCA, IR , JR, B, LDA , WORK , LWORK, IFAIL)
IF (ROOT) THEN
WRITE (NOUT,'(1X,"The third column of the matrix",/)')
DO 20 I = 1, M
WRITE (NOUT,'(1X,F8.4)') B(I,1)
CONTINUE
WRITE (NOUT,*)
END IF

* Gather the 2nd row of the matrix to processor column 0 and print * the row on the root processor

IFAIL $=0$
IR $=-1$
$\mathrm{JR}=0$
IAA $=(I A-1)+2$
$J A A=J A$
CALL F01WAFP (1, N, A, IAA , JAA, IDESCA, IR, JR, B, LDA , WORK, LWORK, IFAIL)
IF (ROOT) THEN

```
        WRITE (NOUT,'(1X,"The second row of the matrix",/)')
        WRITE (NOUT,'(1X,5(F8.4,2X))') (B (1, J), J=1,N)
        WRITE (NOUT,*)
    END IF
* Gather the matrix to all processors on the grid and print the
* matrix on the root processor
    IFAIL = 0
    IR = -1
    JR = -1
    CALL F01WAFP(M,N,A,IA,JA,IDESCA,IR,JR,B,LDA,WORK,LWORK,IFAIL)
    IF (ROOT) THEN
        WRITE (NOUT,'(1X,"The matrix",/)')
        DO 40 I = 1, M
            WRITE (NOUT,'(1X,5(F8.4,2X))') (B (I , J), J=1,N)
        CONTINUE
        WRITE (NOUT,*)
    END IF
    Print the values l(1), l(2) and l(3) that determine the
    recommended dimension of WORK
    IF (ROOT) THEN
        WRITE (NOUT,
    + '(1X,"The values of l(1), l(2) and l(3) are:",/)')
    WRITE (NOUT,'(1X,"WORK(1) = ",I3)') NINT(WORK(1))
    WRITE (NOUT,'(1X,"WORK(2) = ",I3)') NINT(WORK(2))
    WRITE (NOUT,'(1X,"WORK(3) = ",I3)') NINT(WORK(3))
    END IF
    IFAIL = 0
    CALL Z01ABFP(ICNTXT,'N',IFAIL)
    STOP
    END
    SUBROUTINE GMATA(I1,I2,J1,J2,AL,LDAL)
* GMATA generates the block A(I1: I2, J1: J2) of the matrix A such
* a(i,j) = dble(i) + dble(j)/10000.0
* in the array AL.
* .. Scalar Arguments ..
    INTEGER I1, I2, J1, J2, LDAL
* .. Array Arguments ..
    DOUBLE PRECISION AL(LDAL,*)
* .. Local Scalars ..
    INTEGER I, J, K, L
* .. Intrinsic Functions ..
    INTRINSIC DBLE
* .. Executable Statements ..
    L = 1
    DO 40 J = J1, J2
        K = 1
        DO 20 I = I1, I2
```

*
* that
*
*

```
AL(K,L) = DBLE(I) + DBLE(J)/10000.0DO
K = K + 1
L = L + 1
```

20 CONTINUE
40 CONTINUE
RETURN
END

8.2 Example Data

None.

8.3 Example Results

F01WAFP Example Program Results
The $(3,4)$ element of the matrix
3.0004

The third column of the matrix
1.0003
2.0003
3.0003
4.0003
5.0003
6.0003
7.0003
8.0003
9.0003
10.0003

The second row of the matrix
2.0001
2.0002
2.0003
2.0004
2.0005

The matrix

1.0001	1.0002	1.0003	1.0004	1.0005
2.0001	2.0002	2.0003	2.0004	2.0005
3.0001	3.0002	3.0003	3.0004	3.0005
4.0001	4.0002	4.0003	4.0004	4.0005
5.0001	5.0002	5.0003	5.0004	5.0005
6.0001	6.0002	6.0003	6.0004	6.0005
7.0001	7.0002	7.0003	7.0004	7.0005
8.0001	8.0002	8.0003	8.0004	8.0005
9.0001	9.0002	9.0003	9.0004	9.0005
10.0001	10.0002	10.0003	10.0004	10.0005

The values of $l(1), l(2)$ and $l(3)$ are:

WORK(1) = 6
WORK (2) = 3
WORK (3) $=18$

