
D01 – Quadrature

D01FAFP
NAG Parallel Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check for implementation-dependent
details. You are advised to enclose any calls to NAG Parallel Library routines between calls to Z01AAFP and Z01ABFP.

1 Description

D01FAFP computes an approximation to an n-dimensional definite integral,

I =
∫ b1

a1

dx1 . . .

∫ bn

an

dxn f(x1, x2, . . . , xn)

in up to 10 dimensions over a hyper-rectangular region, using an adaptive subdivision strategy. The
routine also returns an estimate of the absolute error. This routine is suitable for high accuracy work.

2 Specification

SUBROUTINE D01FAFP(ICNTXT, NDIM, F, A, B, EPSABS, EPSREL, MAXFUN,
1 SUBDIV, NDIVID, NSTEP, RESULT, ABSERR, NFUN,
2 WORK, LW, IFAIL)
INTEGER ICNTXT, NDIM, MAXFUN, NDIVID(NDIM), NSTEP,
1 NFUN, LW, IFAIL
DOUBLE PRECISION F, A(NDIM), B(NDIM), EPSABS, EPSREL, RESULT,
1 ABSERR, WORK(LW)
CHARACTER∗1 SUBDIV
EXTERNAL F

3 Usage
3.1 Definitions

The following definitions are used in describing the data distribution within this document:
mp – the number of processor rows in the processor grid.
np – the number of processor columns in the processor grid.
p – mp × np, the total number of processors in the Library Grid.

3.2 Global and Local Arguments

The following global input arguments must have the same value on entry to the routine on each processor
and the global output arguments will have the same value on exit from the routine on each processor:

Global input arguments: NDIM, A, B, EPSABS, EPSREL, MAXFUN, SUBDIV, NDIVID,
NSTEP, LW, IFAIL

Global output arguments: NDIVID, RESULT, ABSERR, NFUN, IFAIL

The remaining arguments are local.

4 Arguments

1: ICNTXT — INTEGER Local Input
On entry: the Library context, usually returned by a call to the Library Grid initialisation routine
Z01AAFP.

Note: the value of ICNTXT must not be changed.

2: NDIM — INTEGER Global Input
On entry: the number of dimensions of the integral, n.

Constraint: 2 ≤ NDIM ≤ 10.

[NP3344/3/pdf] D01FAFP.1

D01FAFP NAG Parallel Library Manual

3: F — DOUBLE PRECISION FUNCTION, supplied by the user. External Procedure

F must return the value of the integrand f at a given point.

Its specification is:

DOUBLE PRECISION FUNCTION F(NDIM, X)
INTEGER NDIM
DOUBLE PRECISION X(NDIM)

1: NDIM — INTEGER Global Input
On entry: the number of dimensions of the integral, n.

2: X(NDIM) — DOUBLE PRECISION array Local Input
On entry: the coordinates of the point at which the integrand must be evaluated.

F must be declared as EXTERNAL in the (sub)program from which D01FAFP is called. Arguments
denoted as Input must not be changed by this procedure.

4: A(NDIM) — DOUBLE PRECISION array Global Input

On entry: the lower limits of integration, ai, for i = 1, 2, . . . , n.

5: B(NDIM) — DOUBLE PRECISION array Global Input

On entry: the upper limits of integration, bi, for i = 1, 2, . . . , n. It is not necessary that ai < bi.

6: EPSABS — DOUBLE PRECISION Global Input

On entry: the absolute accuracy required. If EPSABS is negative, its absolute value is used.

Constraint: EPSABS and EPSREL can not both be 0.0.

7: EPSREL — DOUBLE PRECISION Global Input

On entry: the relative accuracy required. If EPSREL is negative, its absolute value is used.

Constraint: EPSREL and EPSABS can not both be 0.0.

8: MAXFUN — INTEGER Global Input

On entry: the total maximum number of function evaluations to be allowed.

Constraint: MAXFUN ≥ nf , where nf = 3 p [2n + 4n(n − 1)(n − 2)/3 + 2n(3n+ 1) + 1].

9: SUBDIV — CHARACTER*1 Global Input

On entry: determines whether or not an initial, user-specified subdivision of the integration region
is required:

if SUBDIV = ’U’, the user must specify the number of initial subdivisions along each direction
of integration region (see array NDIVID);
if SUBDIV = ’N’, no user-specified initial subdivision is required. The initial subdivision is
chosen internally.

Constraint: SUBDIV = ’U’ or ’N’.

10: NDIVID(NDIM) — INTEGER array Global Input/Global Output

On entry: the number of initial subdivisions along each direction of the integration region.
NDIVID(i) should contain the number of subdivisions along the ith direction. If SUBDIV = ’N’,
then this array need not be set.

On exit: the number of initial subdivisions used internally in the case SUBDIV = ’N’.

Constraint: NDIVID(1) × NDIVID(2) × · · ·× NDIVID(NDIM) = p.

D01FAFP.2 [NP3344/3/pdf]

D01 – Quadrature D01FAFP

11: NSTEP — INTEGER Global Input

On entry: the maximum number of adaptive subdivision stages performed between two dynamic
load balancing steps (see Section 6.2).

Suggested value: NSTEP = 1.

Constraint: NSTEP ≥ 1.

12: RESULT — DOUBLE PRECISION Global Output

On exit: the approximation to the integral I.

13: ABSERR — DOUBLE PRECISION Global Output

On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
|I−RESULT|.

14: NFUN — INTEGER Global Output

On exit: the total number of function evaluations used in computing the integral.

15: WORK(LW) — DOUBLE PRECISION Local Workspace
16: LW — INTEGER Global Input

On entry: the dimension of the arrayWORK as declared in the (sub)program from which D01FAFP
is called. The value of LW imposes a bound on the number of subregions which can be stored on
each processor. The number of subregions on each processor cannot exceed LW/(2×NDIM+3).

Suggested value: LW = (2×NDIM+3)(3×MAXFUN+nf)/(2nf).

Constraint: LW ≥ 2 × (2×NDIM+3).

17: IFAIL — INTEGER Global Input/Global Output

The NAG Parallel Library provides a mechanism, via the routine Z02EAFP, to reduce the amount
of parameter validation performed by this routine. For a full description refer to the Z02 Chapter
Introduction.

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this argument (described in
the Essential Introduction) the recommended values are:

IFAIL = 0, if multigridding is not employed;
IFAIL = −1, if multigridding is employed.

On exit: IFAIL = 0 (or −9999 if reduced error checking is enabled) unless the routine detects an
error (see Section 5).

5 Errors and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output from the root processor (or processor
{0,0} when the root processor is not available) on the current error message unit (as defined by X04AAF).

5.1 Full Error Checking Mode Only

IFAIL = −2000
The routine has been called with an invalid value of ICNTXT on one or more processors.

IFAIL = −1000
The logical processor grid and library mechanism (Library Grid) have not been correctly defined,
see Z01AAFP.

IFAIL = −i

On entry, the ith argument had an invalid value. This error occurred either because a global
argument did not have the same value on all the logical processors (see Section 3.2), or because its
value was incorrect. An explanatory message distinguishes between these two cases.

[NP3344/3/pdf] D01FAFP.3

D01FAFP NAG Parallel Library Manual

5.2 Any Error Checking Mode

IFAIL = 1
The maximum number of function evaluations allowed (MAXFUN) with the given workspace
has been exceeded or is about to be exceeded. The user may consider relaxing the accuracy
requirements specified by EPSABS and EPSREL or increasing MAXFUN and the amount of
workspace accordingly. RESULT and ABSERR respectively contain current estimates for the
integral and the absolute error.

IFAIL = 2
LW is too small for D01FAFP to continue. The same advice applies as in the case of IFAIL = 1.
RESULT and ABSERR respectively contain current estimates for the integral and the absolute
error.

6 Further Comments
6.1 Algorithmic Detail

This routine calculates an approximation to the integral

I =
∫ b1

a1

dx1 . . .

∫ bn

an

dxn f(x1, x2, . . . , xn) (1)

using a global adaptive algorithm. It is based on a degree 9 integration rule developed by Genz and Malik
[2] and applies the error estimate procedure proposed by Berntsen [1].

The subroutine divides the integration region into a number of subregions. Inside each subregion the
integral and the integration error are estimated. The initial subdivision of the integration region is chosen
according to the values in the array NDIVID, and each of the initial subregions is assigned to a different
processor. The results of each processor are stored in a partially ordered list (a heap) in the processor’s
own local memory.

The routine then proceeds in stages. At each stage, each processor selects the subregion with the largest
error estimate in its own heap. This subregion is halved along the coordinate axis where the integrand
has the largest absolute fourth divided difference. The results from the two halves are used to update
the integral and error estimates. The process continues until the required accuracy is attained or further
subdivision would use more than MAXFUN function evaluations.

6.2 Parallelism Detail

The error estimates for the initial subregions may vary significantly, which means that the work initially
assigned to the different processors is not of equal difficulty. In this case, the simple algorithmic
scheme described in Section 6.1 performs poorly because processors assigned easy tasks quickly run
out of subregions with large error estimates while at the same time such subregions are still available
on processors assigned difficult tasks. D01FAFP overcomes this problem by dynamically redistributing
difficult subregions between different processors. The dynamic load balancing scheme employed proceeds
in stages, subsequent stages occuring at least every NSTEP subdivision steps. At each stage, each
processor sends information about its local error estimates to a specific neighbouring processor. Upon
receiving this information from a neighbouring processor, each processor decides whether or not it should
offload some of its work and — if so — sends a number of subregions to this neighbouring processor.

The dynamic load balancing scheme described requires only communication between directly connected
processors (according to a cyclic two-dimensional mesh topology) and can be shown to be highly scalable
(see D’Apuzzo et al. [3]). If the load balancing mechanism is successful, the total number of function
evaluations NFUN used in computing the integral should not grow significantly when the number of
processors p is increased. The parameter NSTEP can be used to increase the granularity of the algorithm
if the parallel overhead associated with the dynamic load balancing scheme is too high. Larger values
of NSTEP result in a reduced parallel overhead, but may potentially cause an increased load imbalance,
which dimishes the performance of the algorithm.

6.3 Accuracy

An estimate of the absolute error is given, on exit, by the value of ABSERR.

D01FAFP.4 [NP3344/3/pdf]

D01 – Quadrature D01FAFP

7 References

[1] Bernsten, J (1989) Practical error estimation in adaptive multi-dimensional quadrature routines,
J. Comput. Appl. Math. 25 327–340.

[2] Genz, A C and Malik, A A (1983) An embedded family of fully symmetric numerical integration
rules, SIAM J. Numer. Anal. 20 580–588.

[3] D’Apuzzo, M, Lapegna, M and Murli, A Scalability and Load Balancing in Adaptive Algorithms for
multi-dimensional integration Technical Report n. 2/95 , Centro di Ricerche per il Calcolo Parallelo
e i Supercalcolatori. December 1995.

8 Example

This example calculates the integral

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

5∑
k=0

cos(0.5 + k(x1 + x2 + x3 + x4)− 4)dx4 dx3 dx2 dx1,

8.1 Example Text

* D01FAFP Example Program Text
* NAG Parallel Library Release 2. NAG Copyright 1996.
* .. Parameters ..

INTEGER NOUT, NDIM, MAXMP, MAXNP, NFUNRL, MAXFUN, LW
PARAMETER (NOUT=6,NDIM=4,MAXMP=2,MAXNP=2,

+ NFUNRL=2*NDIM*(3*NDIM+1)+4*NDIM*(NDIM-1)*(NDIM-2)
+ /3+2**NDIM+1,MAXFUN=20*3*NFUNRL*MAXMP*MAXNP,
+ LW=(2*NDIM+3)*(3*MAXFUN+NFUNRL)/(2*NFUNRL))

* .. Local Scalars ..
DOUBLE PRECISION ABSERR, EPSABS, EPSREL, RESULT
INTEGER I, ICNTXT, IFAIL, MP, NFUN, NP, NSTEP
LOGICAL ROOT
CHARACTER SUBDIV

* .. Local Arrays ..
DOUBLE PRECISION A(NDIM), B(NDIM), WORK(LW)
INTEGER NDIVID(NDIM)

* .. External Functions ..
DOUBLE PRECISION F
LOGICAL Z01ACFP
EXTERNAL F, Z01ACFP

* .. External Subroutines ..
EXTERNAL D01FAFP, Z01AAFP, Z01ABFP

* .. Executable Statements ..

ROOT = Z01ACFP()
IF (ROOT) WRITE (NOUT,*) ’D01FAFP Example Program Results’

MP = 2
NP = 2
IFAIL = 0

*
* .. Initialise the Library Grid
*

CALL Z01AAFP(ICNTXT,MP,NP,IFAIL)
*
* .. Initialise input arguments ..
*

[NP3344/3/pdf] D01FAFP.5

D01FAFP NAG Parallel Library Manual

DO 20 I = 1, NDIM
A(I) = 0.D0
B(I) = 1.D0

20 CONTINUE
EPSABS = 0.0D0
EPSREL = 1.0D-4

*
* User provided initial subdivisions
*

SUBDIV = ’U’
NDIVID(1) = 2
NDIVID(2) = 2
NDIVID(3) = 1
NDIVID(4) = 1
NSTEP = 1

*
* Integrate function F
*

CALL D01FAFP(ICNTXT,NDIM,F,A,B,EPSABS,EPSREL,MAXFUN,SUBDIV,NDIVID,
+ NSTEP,RESULT,ABSERR,NFUN,WORK,LW,IFAIL)

*
IF (ROOT) THEN

WRITE (NOUT,*)
WRITE (NOUT,99999) ’Computed result = ’,

+ RESULT
WRITE (NOUT,99998) ’Computed absolute error = ’,

+ ABSERR
WRITE (NOUT,99997) ’No. of function evaluations = ’,

+ NFUN
END IF

CALL Z01ABFP(ICNTXT,’No’,IFAIL)

STOP
*
99999 FORMAT (1x,A,F12.4)
99998 FORMAT (1x,A,E12.2)
99997 FORMAT (1x,A,I12)

END
*
*

DOUBLE PRECISION FUNCTION F(NDIM,X)
*
* This function evaluates the function to be integrated
* NDIM < 10
*
* .. Scalar Arguments ..

INTEGER NDIM
* .. Array Arguments ..

DOUBLE PRECISION X(NDIM)
* .. Local Scalars ..

DOUBLE PRECISION SUM1, SUM2
INTEGER K

* .. Intrinsic Functions ..
INTRINSIC COS, DBLE

* .. Executable Statements ..
SUM1 = 0.0D0
DO 20 K = 1, NDIM

D01FAFP.6 [NP3344/3/pdf]

D01 – Quadrature D01FAFP

SUM1 = SUM1 + X(K)
20 CONTINUE

SUM2 = 0.0D0
DO 40 K = 0, 5

SUM2 = SUM2 + COS(0.5D0+DBLE(K)*SUM1-DBLE(NDIM))
40 CONTINUE

F = SUM2
RETURN
END

8.2 Example Data

None.

8.3 Example Results

D01FAFP Example Program Results

Computed result = -0.5991
Computed absolute error = 0.57E-04
No. of function evaluations = 24786

[NP3344/3/pdf] D01FAFP.7 (last)

