/* nag_sparse_sym_rcm (f11yec) Example Program.
*
* Copyright 2017 Numerical Algorithms Group.
*
* Mark 26.2, 2017.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf11.h>
void plot(const Integer n, const Integer nnz, Integer *perm,
Integer *icolzp, Integer *irowix);
void uncompress(Integer n, Integer *icolzp, Integer *icol);
int main(void)
{
/* Scalars */
Integer n, nnz, exit_status = 0, doplot = 0, i;
/* Arrays */
Integer *icolzp = 0, *irowix = 0, *mask = 0, *perm = 0;
Integer info[4];
Nag_Boolean lopts[5];
/* Nag Types */
NagError fail;
INIT_FAIL(fail);
printf("nag_sparse_sym_rcm (f11yec) Example Program Results\n");
/* Skip heading in data file and
* read Size of the matrix and Number of nonzero elements
*/
scanf("%*[^\n] ");
scanf("%" NAG_IFMT "%*[^\n] ", &n);
scanf("%" NAG_IFMT "%*[^\n] ", &nnz);
if (!(icolzp = NAG_ALLOC((n + 1), Integer)) ||
!(irowix = NAG_ALLOC((nnz), Integer)) ||
!(mask = NAG_ALLOC((n), Integer)) || !(perm = NAG_ALLOC((n), Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read in data */
for (i = 0; i < nnz; i += 1)
scanf("%" NAG_IFMT "", &irowix[i]);
scanf("%*[^\n] ");
for (i = 0; i < (n + 1); i += 1)
scanf("%" NAG_IFMT "", &icolzp[i]);
scanf("%*[^\n] ");
/* Set options */
lopts[0 /* Use Mask */ ] = Nag_FALSE;
lopts[1 /* Don't reverse */ ] = Nag_FALSE;
lopts[2 /* Check symmetry */ ] = Nag_TRUE;
lopts[3 /* Compute bandwidth before */ ] = Nag_TRUE;
lopts[4 /* Compute bandwidth after */ ] = Nag_TRUE;
/* nag_sparse_sym_rcm (f11yec).
* Reverse Cuthill-McKee reordering of a real sparse symmetric
* matrix in CCS format
*/
nag_sparse_sym_rcm(n, nnz, icolzp, irowix, lopts, mask, perm, info, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_sparse_sym_rcm (f11yec).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print results */
printf("Permutation (perm):\n");
for (i = 0; i < n; i += 1) {
printf(" %3" NAG_IFMT "", perm[i]);
if (i % 6 == 5)
printf("\n");
}
printf("\n\nStatistics:\n");
printf(" %s%6" NAG_IFMT "\n", " Before: Bandwidth = ", info[0]);
printf(" %s%6" NAG_IFMT "\n", " Before: Profile = ", info[1]);
printf(" %s%6" NAG_IFMT "\n", " After : Bandwidth = ", info[2]);
printf(" %s%6" NAG_IFMT "\n", " After : Profile = ", info[3]);
/* Print matrix entries and permuted entries in form suitable
* for plotting
*/
if (doplot)
plot(n, nnz, perm, icolzp, irowix);
END:
NAG_FREE(icolzp);
NAG_FREE(irowix);
NAG_FREE(mask);
NAG_FREE(perm);
return exit_status;
}
void uncompress(Integer n, Integer *icolzp, Integer *icol)
{
Integer i, j, col_beg, col_end;
for (i = 0; i < n; i++) {
col_end = icolzp[i + 1] - 1;
col_beg = icolzp[i];
for (j = col_beg; j <= col_end; j++)
icol[j - 1] = i + 1;
}
}
void plot(const Integer n, const Integer nnz, Integer *perm,
Integer *icolzp, Integer *irowix)
{
/* Put data, suitable for plotting matrix structure, in data file */
/* Scalars */
Integer i, nnz2;
/* Arrays */
double *a = 0;
Integer *icolix = 0, *ipcolix = 0, *iperm = 0, *iprowix = 0, *istr = 0;
/* Nag Types */
NagError fail;
INIT_FAIL(fail);
if (!(icolix = NAG_ALLOC(nnz, Integer)) ||
!(ipcolix = NAG_ALLOC(nnz, Integer)) ||
!(iprowix = NAG_ALLOC(nnz, Integer)) ||
!(iperm = NAG_ALLOC(n, Integer)) ||
!(a = NAG_ALLOC(nnz, double)) || !(istr = NAG_ALLOC(n + 1, Integer)))
{
printf("Allocation failure\n");
return;
}
/* Decompress icolzp to full set of column indices (icolix)
* and compute inverse permutation
*/
uncompress(n, icolzp, icolix);
for (i = 0; i < n; i++) {
iperm[perm[i] - 1] = i + 1;
}
/* Original matrix structure */
for (i = 0; i < nnz; i++) {
a[i] = icolix[i] * .01 + 1.0 * irowix[i];
printf("%8" NAG_IFMT " ", irowix[i]);
printf("%8" NAG_IFMT " ", icolix[i]);
printf("%8.2f\n", a[i]);
}
printf("\n");
/* Apply Inverse Permutation */
for (i = 0; i < nnz; i++) {
ipcolix[i] = iperm[icolix[i] - 1];
iprowix[i] = iperm[irowix[i] - 1];
}
/* Reorder (in exit: istr contains new CCS icolzp) */
nnz2 = nnz;
nag_sparse_nsym_sort(n, &nnz2, a, ipcolix, iprowix, Nag_SparseNsym_FailDups,
Nag_SparseNsym_KeepZeros, istr, &fail);
/* Permuted matrix structure */
for (i = 0; i < nnz2; i++) {
printf("%8" NAG_IFMT " ", iprowix[i]);
printf("%8" NAG_IFMT " ", ipcolix[i]);
printf("%8.2f\n", a[i]);
}
NAG_FREE(icolix);
NAG_FREE(ipcolix);
NAG_FREE(iprowix);
NAG_FREE(iperm);
NAG_FREE(a);
NAG_FREE(istr);
}