/* nag_zheevx (f08fpc) Example Program.
*
* Copyright 2017 Numerical Algorithms Group.
*
* Mark 26.2, 2017.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf08.h>
#include <nagx04.h>
int main(void)
{
/* Scalars */
double abstol, vl, vu;
Integer exit_status = 0, i, il = 0, iu = 0, j, m, n, pda, pdz;
/* Arrays */
Complex *a = 0, *z = 0;
double *w = 0;
Integer *index = 0;
/* Nag Types */
Nag_OrderType order;
NagError fail, fail_print;
#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define Z(I, J) z[(J - 1) * pdz + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define Z(I, J) z[(I - 1) * pdz + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_zheevx (f08fpc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%" NAG_IFMT "%*[^\n]", &n);
m = n;
/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)) ||
!(z = NAG_ALLOC(n * m, Complex)) ||
!(w = NAG_ALLOC(n, double)) || !(index = NAG_ALLOC(n, Integer)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
pda = n;
#ifdef NAG_COLUMN_MAJOR
pdz = n;
#else
pdz = m;
#endif
/* Read the lower and upper bounds of the interval to be searched,
* and read the upper triangular part of the matrix A from data file.
*/
scanf("%lf%lf%*[^\n]", &vl, &vu);
for (i = 1; i <= n; ++i)
for (j = i; j <= n; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
scanf("%*[^\n]");
/* Set the absolute error tolerance for eigenvalues.
* With abstol set to zero, the default value is used instead.
*/
abstol = 0.0;
/* nag_zheevx (f08fpc).
* Solve the Hermitian eigenvalue problem.
*/
nag_zheevx(order, Nag_DoBoth, Nag_Interval, Nag_Upper, n, a, pda, vl,
vu, il, iu, abstol, &m, w, z, pdz, index, &fail);
if (fail.code != NE_NOERROR && fail.code != NE_CONVERGENCE) {
printf("Error from nag_zheevx (f08fpc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* nag_complex_divide (a02cdc).
* Normalize the eigenvectors.
*/
for (j = 1; j <= m; j++)
for (i = n; i >= 1; i--)
Z(i, j) = nag_complex_divide(Z(i, j), Z(1, j));
/* Print solution */
printf("Number of eigenvalues found =%5" NAG_IFMT "\n", m);
printf("\nEigenvalues\n");
for (j = 0; j < m; ++j)
printf("%8.4f%s", w[j], (j + 1) % 8 == 0 ? "\n" : " ");
printf("\n\n");
/* nag_gen_complx_mat_print (x04dac).
* Print selected eigenvectors.
*/
INIT_FAIL(fail_print);
fflush(stdout);
nag_gen_complx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, m, z,
pdz, "Selected eigenvectors", 0, &fail_print);
if (fail_print.code != NE_NOERROR) {
printf("Error from nag_gen_complx_mat_print (x04dac).\n%s\n",
fail_print.message);
exit_status = 1;
goto END;
}
if (fail.code == NE_CONVERGENCE) {
printf("eigenvectors failed to converge\n");
printf("Indices of eigenvectors that did not converge\n");
for (j = 0; j < m; ++j)
printf("%8" NAG_IFMT "%s", index[j], (j + 1) % 8 == 0 ? "\n" : " ");
}
END:
NAG_FREE(a);
NAG_FREE(z);
NAG_FREE(w);
NAG_FREE(index);
return exit_status;
}
#undef A
#undef Z