/* nag_opt_handle_solve_ipopt (e04stc) Example Program.
*
* Copyright 2017 Numerical Algorithms Group.
*
* Mark 26.2, 2017.
*/
/*
* NLP example: Linear objective + Linear constraint + Non-Linear constraint
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage04.h>
#include <nagf16.h>
#include <nagx04.h>
#include <math.h>
#ifdef __cplusplus
extern "C"
{
#endif
static void NAG_CALL objfun(Integer nvar, const double x[],
double *fx,
Integer *flag, Nag_Comm *comm);
static void NAG_CALL objgrd(Integer nvar, const double x[],
Integer nnzfd, double fdx[],
Integer *flag, Nag_Comm *comm);
static void NAG_CALL confun(Integer nvar, const double x[],
Integer ncnln, double gx[],
Integer *flag, Nag_Comm *comm);
static void NAG_CALL congrd(Integer nvar, const double x[],
Integer nnzgd, double gdx[],
Integer *flag, Nag_Comm *comm);
static void NAG_CALL hess(Integer nvar, const double x[],
Integer ncnln, Integer idf, double sigma,
const double lambda[], Integer nnzh, double hx[],
Integer *flag, Nag_Comm *comm);
static void NAG_CALL mon(Integer nvar, const double x[],
Integer nnzu, const double u[],
Integer *flag, const double rinfo[],
const double stats[], Nag_Comm *comm);
#ifdef __cplusplus
}
#endif
int main(void)
{
#define BIGBND 1.0E40
/* Scalars */
double solve_timeout = 10.0;
Integer exit_status = 0, islinear;
Integer i, idlc, idx, j, nnzu, nvar, nclin, ncnln, nnzgd;
/* Arrays */
Integer iuser[2];
Integer idxfd[4] = {1,2,3,4};
double ruser[4] = {24.55, 26.75, 39.00, 40.50};
double rinfo[32], stats[32], *x = 0, *u = 0;
double bl[4] = {0,0,0,0};
double bu[4] = {BIGBND,BIGBND,BIGBND,BIGBND};
double linbl[2] = {5.0,1.0};
double linbu[2] = {BIGBND,1.0};
double nlnbl[1] = {21.0};
double nlnbu[1] = {BIGBND};
Integer irowb[8] = {1,1,1,1,2,2,2,2};
Integer icolb[8] = {1,2,3,4,1,2,3,4};
Integer irowgd[4] = {1,1,1,1};
Integer icolgd[4] = {1,2,3,4};
Integer irowh[10], icolh[10];
double b[8]= {2.3, 5.6, 11.1, 1.3, 1.0, 1.0, 1.0, 1.0};
char opt[80];
void *handle = 0;
/* Nag Types */
NagError fail;
Nag_Comm comm;
Nag_FileID nout, file_out, mon_out, umon_out;
/* nag_open_file (x04acc).
* Open unit number for reading, writing or appending, and
* associate unit with named file
*/
nag_open_file("", 1, &nout, NAGERR_DEFAULT);
/* nag_write_line (x04bac).
* Write formatted record to external file
*/
nag_write_line(nout, "nag_opt_handle_solve_ipopt (e04stc) "
"Example Program Results");
nag_open_file("e04stc.out", 1, &file_out, NAGERR_DEFAULT);
nag_open_file("e04stc.mon", 1, &mon_out, NAGERR_DEFAULT);
nag_open_file("e04stc.umon", 1, &umon_out, NAGERR_DEFAULT);
for (islinear=0;islinear<=1;islinear++){
nnzu = 0;
nvar = 4;
/* nag_opt_handle_init (e04rac).
* Initialize an empty problem handle with NVAR variables.
*/
nag_opt_handle_init(&handle, nvar, NAGERR_DEFAULT);
sprintf(opt,"Infinite Bound Size = %e",BIGBND);
/* nag_opt_handle_opt_set (e04zmc).
* Set optional arguments of the solver
*/
nag_opt_handle_opt_set(handle, opt, NAGERR_DEFAULT);
nnzu += 2*nvar;
/* nag_opt_handle_set_simplebounds (e04rhc).
* Define bounds on the variables
*/
nag_opt_handle_set_simplebounds(handle, nvar, bl, bu, NAGERR_DEFAULT);
iuser[0] = islinear;
comm.iuser = iuser;
comm.user = ruser;
if (islinear==1) {
/* nag_opt_handle_set_linobj (e04rec).
* Define linear objective
*/
nag_opt_handle_set_linobj(handle, nvar, ruser, NAGERR_DEFAULT);
} else {
/* nag_opt_handle_set_nlnobj (e04rgc).
* Define non-linear objective
*/
nag_opt_handle_set_nlnobj(handle, nvar, idxfd, NAGERR_DEFAULT);
}
nclin = 2;
nnzu += 2*nclin;
idlc = 0;
/* nag_opt_handle_set_linconstr (e04rjc).
* Define a block of linear constraints
*/
nag_opt_handle_set_linconstr(handle, nclin, linbl, linbu, nclin*nvar,
irowb, icolb, b, &idlc, NAGERR_DEFAULT);
ncnln = 1;
/* dense gradients */
nnzgd = ncnln * nvar;
nnzu += 2*ncnln;
/* nag_opt_handle_set_nlnconstr (e04rkc).
* Define a block of nonlinear constraints
*/
nag_opt_handle_set_nlnconstr(handle, ncnln, nlnbl, nlnbu, nnzgd,
irowgd, icolgd, NAGERR_DEFAULT);
/* Define structure of the Hessian, dense upper triangle */
for(idx=0,i=1;i<=nvar;i++)
for(j=i;j<=nvar;j++,idx++){
icolh[idx] = j;
irowh[idx] = i;
}
/* nag_opt_handle_set_nlnhess (e04rlc).
* Define structure of Hessian of objective, constraints or the Lagrangian
*/
nag_opt_handle_set_nlnhess(handle, 1, idx, irowh, icolh, NAGERR_DEFAULT);
if (islinear!=1)
nag_opt_handle_set_nlnhess(handle, 0, idx, irowh, icolh, NAGERR_DEFAULT);
/* nag_opt_handle_print (e04ryc).
Print information about a problem
*/
nag_opt_handle_print(handle, nout, "Overview", NAGERR_DEFAULT);
if (!(x = NAG_ALLOC(nvar, double)) ||
!(u = NAG_ALLOC(nnzu, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
for (i=0;i<nvar;i++) x[i]=1.0;
iuser[1] = umon_out;
sprintf(opt, "Monitoring File = %" NAG_IFMT, mon_out);
nag_opt_handle_opt_set(handle, opt, NAGERR_DEFAULT);
nag_opt_handle_opt_set(handle, "Monitoring Level = 3", NAGERR_DEFAULT);
nag_opt_handle_opt_set(handle, "Outer Iteration Limit = 26",
NAGERR_DEFAULT);
sprintf(opt, "Print File = %" NAG_IFMT, file_out);
nag_opt_handle_opt_set(handle, opt, NAGERR_DEFAULT);
nag_opt_handle_opt_set(handle, "Print Level = 2", NAGERR_DEFAULT);
nag_opt_handle_opt_set(handle, "Stop Tolerance 1 = 2.5e-8", NAGERR_DEFAULT);
nag_opt_handle_opt_set(handle, "Time Limit = 60", NAGERR_DEFAULT);
INIT_FAIL(fail);
/* nag_opt_handle_solve_ipopt (e04stc).
* Run Ipopt solver on a sparse nonlinear programming problem
*/
nag_opt_handle_solve_ipopt(handle, objfun, objgrd, confun, congrd, hess,
mon, nvar, x, nnzu, u, rinfo, stats, &comm,
&fail);
if (fail.code == NE_NOERROR) {
char msg[80];
nag_opt_handle_print(handle, nout, "Options", &fail);
nag_write_line(nout, "Variables");
for (i=0; i<nvar; i++) {
sprintf(msg, " x(%10" NAG_IFMT ")%17s=%20.6e", i+1, "", x[i]);
nag_write_line(nout, msg);
}
nag_write_line(nout, "Variable bound Lagrange multipliers");
for (i=0; i<nvar; i++) {
sprintf(msg, " zL(%10" NAG_IFMT ")%16s=%20.6e", i+1, "", u[2*i]);
nag_write_line(nout, msg);
sprintf(msg, " zU(%10" NAG_IFMT ")%16s=%20.6e", i+1, "", u[2*i+1]);
nag_write_line(nout, msg);
}
nag_write_line(nout, "Linear constraints Lagrange multipliers");
for (i=0;i<nclin;i++) {
sprintf(msg, " l+(%10" NAG_IFMT ")%16s=%20.6e", i+1, "",
u[2*nvar+2*i]);
nag_write_line(nout,msg);
sprintf(msg, " l-(%10" NAG_IFMT ")%16s=%20.6e", i+1, "",
u[2*nvar+2*i+1]);
nag_write_line(nout, msg);
}
nag_write_line(nout, "Nonlinear constraints Lagrange multipliers");
for (i=0;i<ncnln;i++) {
sprintf(msg, " l+(%10" NAG_IFMT ")%16s=%20.6e", i+1, "",
u[2*(nvar+nclin)+2*i]);
nag_write_line(nout, msg);
sprintf(msg, " l-(%10" NAG_IFMT ")%16s=%20.6e", i+1, "",
u[2*(nvar+nclin)+2*i+1]);
nag_write_line(nout, msg);
}
sprintf(msg, "\nAt solution, Objective minimum =%20.7e", rinfo[0]);
nag_write_line(nout, msg);
sprintf(msg, " Constraint violation =%20.2e", rinfo[1]);
nag_write_line(nout, msg);
sprintf(msg, " Dual infeasibility =%20.2e", rinfo[2]);
nag_write_line(nout, msg);
sprintf(msg, " Complementarity =%20.2e", rinfo[3]);
nag_write_line(nout, msg);
sprintf(msg, " KKT error =%20.2e", rinfo[4]);
nag_write_line(nout, msg);
if (stats[7] < solve_timeout)
sprintf(msg, "Solved in allotted time limit");
else
sprintf(msg, "Solution took %6.2f sec, which is longer than expected",
stats[7]);
nag_write_line(nout, msg);
sprintf(msg, " after iterations :%11.0f",
stats[0]);
nag_write_line(nout, msg);
sprintf(msg, " after objective evaluations :%11.0f",
stats[18]);
nag_write_line(nout, msg);
sprintf(msg, " after objective gradient evaluations :%11.0f",
stats[4]);
nag_write_line(nout, msg);
sprintf(msg, " after constraint evaluations :%11.0f",
stats[19]);
nag_write_line(nout, msg);
sprintf(msg, " after constraint gradient evaluations :%11.0f",
stats[20]);
nag_write_line(nout, msg);
sprintf(msg, " after hessian evaluations :%11.0f",
stats[3]);
nag_write_line(nout, msg);
nag_opt_handle_print(handle, nout, "Overview", NAGERR_DEFAULT);
nag_write_line(nout,
"-----------------------------------------------------");
} else {
printf("Error from nag_opt_handle_solve_ipopt (e04stc).\n%s\n",
fail.message);
exit_status = 1;
}
if (handle)
/* nag_opt_handle_free (e04rzc).
* Destroy the problem handle and deallocate all the memory used
*/
nag_opt_handle_free(&handle, NAGERR_DEFAULT);
NAG_FREE(x);
NAG_FREE(u);
}
END:
return exit_status;
}
/* Subroutine */
#include <assert.h>
static void NAG_CALL objfun(Integer nvar, const double x[],
double *fx,
Integer *flag, Nag_Comm *comm)
{
*flag = 0;
/* nag_ddot (f16eac).
* Dot product of two vectors, allows scaling and accumulation
*/
nag_ddot(Nag_NoConj,4,1.0,x,1,0.0,comm->user,1,fx,NAGERR_DEFAULT);
assert (comm->iuser[0]!=1) ;
}
static void NAG_CALL objgrd(Integer nvar, const double x[],
Integer nnzfd, double fdx[],
Integer *flag, Nag_Comm *comm)
{
*flag = 0;
/* nag_dge_copy (f16qfc).
* Matrix copy, real rectangular matrix
*/
nag_dge_copy(Nag_ColMajor, Nag_NoTrans, nnzfd, 1, comm->user, nnzfd, fdx,
nnzfd, NAGERR_DEFAULT);
assert(comm->iuser[0]!=1);
}
static void NAG_CALL confun(Integer nvar, const double x[],
Integer ncnln, double gx[],
Integer *flag, Nag_Comm *comm)
{
*flag = 0;
gx[0]= 12.0*x[0] + 11.9*x[1] + 41.8*x[2] + 52.1*x[3] -
1.645*sqrt(.28*x[0]*x[0]+.19*x[1]*x[1]+20.5*x[2]*x[2]+.62*x[3]*x[3]);
}
static void NAG_CALL congrd(Integer nvar, const double x[],
Integer nnzgd, double gdx[],
Integer *flag, Nag_Comm *comm)
{
double tmp;
*flag = 0;
tmp = sqrt(0.62*x[3]*x[3]+20.5*x[2]*x[2]+0.19*x[1]*x[1]+0.28*x[0]*x[0]);
gdx[0] = (12.0*tmp-0.4606*x[0])/tmp;
gdx[1] = (11.9*tmp-0.31255*x[1])/tmp;
gdx[2] = (41.8*tmp-33.7225*x[2])/tmp;
gdx[3] = (52.1*tmp-1.0199*x[3])/tmp;
}
static void NAG_CALL hess(Integer nvar, const double x[], Integer ncnln,
Integer idf, double sigma, const double lambda[],
Integer nnzh, double hx[],
Integer *flag, Nag_Comm *comm)
{
double tmp;
*flag = 0;
/* nag_dload (f16fbc).
* Broadcast scalar into real vector
*/
nag_dload(nnzh, 0.0, hx, 1, NAGERR_DEFAULT);
if (idf==0) return; /* objective is linear */
tmp = sqrt(0.62*x[3]*x[3] + 20.5*x[2]*x[2] + 0.19*x[1]*x[1]
+ 0.28*x[0]*x[0]);
tmp = tmp*(x[3]*x[3] + 33.064516129032258064 *x[2]*x[2]
+ 0.30645161290322580645*x[1]*x[1]
+ 0.45161290322580645161*x[0]*x[0]);
/* Col 1 */
hx[0] = (-0.4606*x[3]*x[3] - 15.229516129032258064 *x[2]*x[2]
- 0.14115161290322580645*x[1]*x[1])/tmp;
hx[1] = (0.14115161290322580645*x[0]*x[1])/tmp;
hx[2] = (15.229516129032258064 *x[0]*x[2])/tmp;
hx[3] = (0.4606*x[0]*x[3])/tmp;
/* Col 2 */
hx[4] = (-0.31255*x[3]*x[3] - 10.334314516129032258 *x[2]*x[2]
- 0.14115161290322580645*x[0]*x[0])/tmp;
hx[5] = (10.334314516129032258*x[1]*x[2])/tmp;
hx[6] = (0.31255*x[1]*x[3])/tmp;
/* Col 3 */
hx[7] = (-33.7225*x[3]*x[3] - 10.334314516129032258*x[1]*x[1]
- 15.229516129032258065*x[0]*x[0])/tmp;
hx[8] = (33.7225*x[2]*x[3])/tmp;
/* Col 4 */
hx[9] = (-33.7225*x[2]*x[2] - 0.31255*x[1]*x[1] - 0.4606*x[0]*x[0])/tmp;
/* nag_daxpby (f16ecc).
* Real weighted vector addition
*/
if (idf==-1)
nag_daxpby(nnzh, 0.0, hx, 1, lambda[0], hx, 1, NAGERR_DEFAULT);
else
assert(idf == 1);
}
static void NAG_CALL mon(Integer nvar, const double x[],
Integer nnzu, const double u[],
Integer *flag, const double rinfo[],
const double stats[], Nag_Comm *comm)
{
Integer i;
char msg[80];
char fmt[80] = "%2" NAG_IFMT "%14.6e %2" NAG_IFMT "%14.6e ";
*flag = 0;
nag_write_line(comm->iuser[1], "Monitoring...");
nag_write_line(comm->iuser[1], " x[]");
for (i=0; i<nvar; i+=2) {
sprintf(msg, fmt, i, x[i], i+1, x[i+1]);
nag_write_line(comm->iuser[1], msg);
}
nag_write_line(comm->iuser[1], " u[]");
for (i=0; i<nnzu; i+=2) {
sprintf(msg, fmt, i, u[i], i+1, u[i+1]);
nag_write_line(comm->iuser[1], msg);
}
nag_write_line(comm->iuser[1], " rinfo[31]");
for (i=0; i<32; i+=2) {
sprintf(msg, fmt, i, rinfo[i], i+1, rinfo[i+1]);
nag_write_line(comm->iuser[1], msg);
}
nag_write_line(comm->iuser[1], " stats[31]");
for (i=0; i<32; i+=2) {
sprintf(msg, fmt, i, stats[i], i+1, stats[i+1]);
nag_write_line(comm->iuser[1], msg);
}
}