NAG Library Routine Document

c05axf (contfn_cntin_rcomm)


c05axf attempts to locate a zero of a continuous function using a continuation method based on a secant iteration. It uses reverse communication for evaluating the function.


Fortran Interface
Subroutine c05axf ( x, fx, tol, ir, scal, c, ind, ifail)
Integer, Intent (In):: ir
Integer, Intent (Inout):: ind, ifail
Real (Kind=nag_wp), Intent (In):: fx, tol, scal
Real (Kind=nag_wp), Intent (Inout):: x, c(26)
C Header Interface
#include <nagmk26.h>
void  c05axf_ (double *x, const double *fx, const double *tol, const Integer *ir, const double *scal, double c[], Integer *ind, Integer *ifail)


c05axf uses a modified version of an algorithm given in Swift and Lindfield (1978) to compute a zero α of a continuous function fx . The algorithm used is based on a continuation method in which a sequence of problems
fx-θrfx0,  r=0,1,,m  
are solved, where 1 = θ0 > θ1 > > θm = 0  (the value of m is determined as the algorithm proceeds) and where x0  is your initial estimate for the zero of fx . For each θr  the current problem is solved by a robust secant iteration using the solution from earlier problems to compute an initial estimate.
You must supply an error tolerance tol. tol is used directly to control the accuracy of solution of the final problem ( θm=0 ) in the continuation method, and tol  is used to control the accuracy in the intermediate problems ( θ1 , θ2 , , θm-1 ).


Swift A and Lindfield G R (1978) Comparison of a continuation method for the numerical solution of a single nonlinear equation Comput. J. 21 359–362


Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the argument ind. Between intermediate exits and re-entries, all arguments other than fx must remain unchanged.
1:     x – Real (Kind=nag_wp)Input/Output
On initial entry: an initial approximation to the zero.
On intermediate exit: the point at which f must be evaluated before re-entry to the routine.
On final exit: the final approximation to the zero.
2:     fx – Real (Kind=nag_wp)Input
On initial entry: if ind=1, fx need not be set.
If ind=-1, fx must contain fx  for the initial value of x.
On intermediate re-entry: must contain fx  for the current value of x.
3:     tol – Real (Kind=nag_wp)Input
On initial entry: a value that controls the accuracy to which the zero is determined. tol is used in determining the convergence of the secant iteration used at each stage of the continuation process. It is used directly when solving the last problem ( θm=0  in Section 3), and tol  is used for the problem defined by θr , r<m . Convergence to the accuracy specified by tol is not guaranteed, and so you are recommended to find the zero using at least two values for tol to check the accuracy obtained.
Constraint: tol>0.0 .
4:     ir – IntegerInput
On initial entry: indicates the type of error test required, as follows. Solving the problem defined by θr , 1rm , involves computing a sequence of secant iterates xr0,xr1, . This sequence will be considered to have converged only if:
for ir=0,
xr i+1 -xri eps×max1.0,xri ,  
for ir=1,
xr i+1 -xri eps,  
for ir=2,
xr i+1 -xri eps×xri ,  
for some i>1 ; here eps  is either tol or tol  as discussed above. Note that there are other subsidiary conditions (not given here) which must also be satisfied before the secant iteration is considered to have converged.
Constraint: ir=0, 1 or 2.
5:     scal – Real (Kind=nag_wp)Input
On initial entry: a factor for use in determining a significant approximation to the derivative of fx  at x=x0 , the initial value. A number of difference approximations to fx0  are calculated using
where h<scal  and h has the same sign as scal. A significance (cancellation) check is made on each difference approximation and the approximation is rejected if insignificant.
Suggested value: ε, where ε is the machine precision returned by x02ajf.
Constraint: scal  must be sufficiently large that x+scalx  on the computer.
6:     c26 – Real (Kind=nag_wp) arrayCommunication Array
( c5  contains the current θr , this value may be useful in the event of an error exit.)
7:     ind – IntegerInput/Output
On initial entry: must be set to 1 or -1 .
fx need not be set.
fx must contain fx .
On intermediate exit: contains 2, 3 or 4. The calling program must evaluate f at x, storing the result in fx, and re-enter c05axf with all other arguments unchanged.
On final exit: contains 0.
Constraint: on entry ind=-1, 1, 2, 3 or 4.
Note: any values you return to c05axf as part of the reverse communication procedure should not include floating-point NaN (Not a Number) or infinity values, since these are not handled by c05axf. If your code does inadvertently return any NaNs or infinities, c05axf is likely to produce unexpected results.
8:     ifail – IntegerInput/Output
On initial entry: ifail must be set to 0, -1 or 1. If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, because for this routine the values of the output arguments may be useful even if ifail0 on exit, the recommended value is -1. When the value -1 or 1 is used it is essential to test the value of ifail on exit.
On final exit: ifail=0 unless the routine detects an error or a warning has been flagged (see Section 6).

Error Indicators and Warnings

If on entry ifail=0 or -1, explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
On entry, ir=value.
Constraint: ir=0, 1 or 2.
On entry, tol=value.
Constraint: tol>0.0.
On initial entry, ind=value.
Constraint: ind=-1 or 1.
On intermediate entry, ind=value.
Constraint: ind=2, 3 or 4.
On entry, scal=value.
Constraint: x+scalx (to machine accuracy).
Significant derivatives of f cannot be computed. This can happen when f is almost constant and nonzero, for any value of scal.
Current problem in the continuation sequence cannot be solved. Perhaps the original problem had no solution or the continuation path passes through a set of insoluble problems: consider refining the initial approximation to the zero. Alternatively, tol is too small, and the accuracy requirement is too stringent, or too large and the initial approximation too poor.
Continuation away from the initial point is not possible. This error exit will usually occur if the problem has not been properly posed or the error requirement is extremely stringent.
Final problem (with θm=0) cannot be solved. It is likely that too much accuracy has been requested, or that the zero is at α=0 and ir=2.
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.


The accuracy of the approximation to the zero depends on tol and ir. In general decreasing tol will give more accurate results. Care must be exercised when using the relative error criterion ( ir=2 ).
If the zero is at x=0 , or if the initial value of x and the zero bracket the point x=0 , it is likely that an error exit with ifail=4, 5 or 6 will occur.
It is possible to request too much or too little accuracy. Since it is not possible to achieve more than machine accuracy, a value of tolmachine precision  should not be input and may lead to an error exit with ifail=4, 5 or 6. For the reasons discussed under ifail=4 in Section 6, tol should not be taken too large, say no larger than tol=1.0E−3 .

Parallelism and Performance

c05axf is not threaded in any implementation.

Further Comments

For most problems, the time taken on each call to c05axf will be negligible compared with the time spent evaluating fx  between calls to c05axf. However, the initial value of x and the choice of tol will clearly affect the timing. The closer that x is to the root, the less evaluations of f required. The effect of the choice of tol will not be large, in general, unless tol is very small, in which case the timing will increase.


This example calculates a zero of x - e-x  with initial approximation x0=1.0 , and tol=1.0E−3  and 1.0E−4 .

Program Text

Program Text (c05axfe.f90)

Program Data


Program Results

Program Results (c05axfe.r)