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1 Scope of the Chapter

This chapter is concerned with the following tasks.

(a) Calculating the discrete Fourier transform of a sequence of real or complex data values.

(b) Calculating the discrete convolution or the discrete correlation of two sequences of real or
complex data values using discrete Fourier transforms.

(c) Calculating the fast Gauss transform approximation to the discrete Gauss transform.

(d) Direct summation of orthogonal series.

2 Background to the Problems

2.1 Discrete Fourier Transforms

2.1.1 Complex transforms

Most of the functions in this chapter calculate the finite discrete Fourier transform (DFT) of a
sequence of n complex numbers zj , for j ¼ 0; 1; . . . ; n� 1. The direct transform is defined by

ẑk ¼ 1ffiffiffi
n

p
Xn�1

j¼0

zj exp �i
2�jk

n

� �
ð1Þ

for k ¼ 0; 1; . . . ; n� 1. Note that equation (1) makes sense for all integral k and with this extension ẑk
is periodic with period n, i.e., ẑk ¼ ẑk�n, and in particular ẑ�k ¼ ẑn�k. Note also that the scale-factor of
1ffiffiffi
n

p may be omitted in the definition of the DFT, and replaced by
1

n
in the definition of the inverse.

If we write zj ¼ xj þ iyj and ẑk ¼ ak þ ibk, then the definition of ẑk may be written in terms of sines
and cosines as

ak ¼ 1ffiffiffi
n

p
Xn�1

j¼0

xj cos
2�jk

n

� �
þ yj sin

2�jk

n

� �� �

bk ¼ 1ffiffiffi
n

p
Xn�1

j¼0

yj cos
2�jk

n

� �
� xj sin

2�jk

n

� �� �
:

The original data values zj may conversely be recovered from the transform ẑk by an inverse discrete
Fourier transform:

zj ¼ 1ffiffiffi
n

p
Xn�1

k¼0

ẑk exp þi
2�jk

n

� �
ð2Þ

for j ¼ 0; 1; . . . ; n� 1. If we take the complex conjugate of (2), we find that the sequence �zj is the DFT
of the sequence �̂zk. Hence the inverse DFT of the sequence ẑk may be obtained by taking the complex
conjugates of the ẑk; performing a DFT, and taking the complex conjugates of the result. (Note that the
terms forward transform and backward transform are also used to mean the direct and inverse
transforms respectively.)

The definition (1) of a one-dimensional transform can easily be extended to multidimensional
transforms. For example, in two dimensions we have

ẑk1k2 ¼
1ffiffiffiffiffiffiffiffiffiffi
n1n2

p
Xn1�1

j1¼0

Xn2�1

j2¼0

zj1j2 exp �i
2�j1k1
n1

� �
exp �i

2�j2k2
n2

� �
: ð3Þ

Note: definitions of the discrete Fourier transform vary. Sometimes (2) is used as the definition of the
DFT, and (1) as the definition of the inverse.
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2.1.2 Real transforms

If the original sequence is purely real valued, i.e., zj ¼ xj, then

ẑk ¼ ak þ ibk ¼ 1ffiffiffi
n

p
Xn�1

j¼0

xj exp �i
2�jk

n

� �

and ẑn�k is the complex conjugate of ẑk. Thus the DFT of a real sequence is a particular type of
complex sequence, called a Hermitian sequence, or half-complex or conjugate symmetric, with the
properties

an�k ¼ ak bn�k ¼ �bk b0 ¼ 0

and, if n is even, bn=2 ¼ 0.

Thus a Hermitian sequence of n complex data values can be represented by only n, rather than 2n,
independent real values. This can obviously lead to economies in storage, with two schemes being used
in this chapter. In the first (deprecated) scheme, which will be referred to as the real storage format for
Hermitian sequences, the real parts ak for 0 � k � n=2 are stored in normal order in the first n=2þ 1
locations of an array x of length n; the corresponding nonzero imaginary parts are stored in reverse
order in the remaining locations of x. To clarify, the following two tables illustrate the storage of the
real and imaginary parts of ẑk for the two cases: n even and n odd.

If n is even then the sequence has two purely real elements and is stored as follows:

Index of x 0 1 2 . . . n=2 . . . n� 2 n� 1

Sequence a0 a1 þ ib1 a2 þ ib2 . . . an=2 . . . a2 � ib2 a1 � ib1

Stored values a0 a1 a2 . . . an=2 . . . b2 b1

x½k� ¼ ak; for k ¼ 0; 1; . . . ; n=2; and
x½n� k� ¼ bk; for k ¼ 1; 2; . . . ; n=2� 1:

If n is odd then the sequence has one purely real element and, letting n ¼ 2sþ 1, is stored as follows:

Index of x 0 1 2 . . . s sþ 1 . . . n� 2 n� 1

Sequence a0 a1 þ ib1 a2 þ ib2 . . . as þ ibs as � ibs . . . a2 � ib2 a1 � ib1

Stored values a0 a1 a2 . . . as bs . . . b2 b1

x½k� ¼ ak; for k ¼ 0; 1; . . . ; s; and
x½n� k� ¼ bk; for k ¼ 1; 2; . . . ; s:

The second (recommended) storage scheme, referred to in this chapter as the complex storage format
for Hermitian sequences, stores the real and imaginary parts ak; bk, for 0 � k � n=2, in consecutive
locations of an array x of length nþ 2. The following two tables illustrate the storage of the real and
imaginary parts of ẑk for the two cases: n even and n odd.

If n is even then the sequence has two purely real elements and is stored as follows:

Index of x 0 1 2 3 . . . n� 2 n� 1 n nþ 1

Stored values a0 b0 ¼ 0 a1 b1 . . . an=2�1 bn=2�1 an=2 bn=2 ¼ 0

x½2� k� 1� ¼ ak; for k ¼ 0; 1; . . . ; n=2; and
x½2� kþ 1� 1� ¼ bk; for k ¼ 0; 1; . . . ; n=2:

If n is odd then the sequence has one purely real element and, letting n ¼ 2sþ 1, is stored as follows:

Index of x 0 1 2 3 . . . n� 2 n� 1 n nþ 1

Stored values a0 b0 ¼ 0 a1 b1 . . . bs�1 as bs 0
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x½2� k� 1� ¼ ak; for k ¼ 0; 1; . . . ; s; and
x½2� kþ 1� 1� ¼ bk; for k ¼ 0; 1; . . . ; s:

Also, given a Hermitian sequence, the inverse (or backward) discrete transform produces a real
sequence. That is,

xj ¼ 1ffiffiffi
n

p a0 þ 2
Xn=2�1

k¼1

ak cos
2�jk

n

� �
� bk sin

2�jk

n

� �� �
þ an=2

 !

where an=2 ¼ 0 if n is odd.

For real data that is two-dimensional or higher, the symmetry in the transform persists for the leading
dimension only. So, using the notation of equation (3) for the complex two-dimensional discrete
transform, we have that ẑk1k2 is the complex conjugate of ẑ n1�k1ð Þ n2�k2ð Þ. It is more convenient for
transformed data of two or more dimensions to be stored as a complex sequence of length
n1=2þ 1ð Þ � n2 � � � � � nd where d is the number of dimensions. The inverse discrete Fourier
transform operating on such a complex sequence (Hermitian in the leading dimension) returns a real
array of full dimension (n1 � n2 � � � � � nd).

2.1.3 Real symmetric transforms

In many applications the sequence xj will not only be real, but may also possess additional symmetries
which we may exploit to reduce further the computing time and storage requirements. For example, if
the sequence xj is odd, xj ¼ �xn�j

� �
, then the discrete Fourier transform of xj contains only sine

terms. Rather than compute the transform of an odd sequence, we define the sine transform of a real
sequence by

x̂k ¼
ffiffiffi
2

n

r Xn�1

j¼1

xj sin
�jk

n

� �
;

which could have been computed using the Fourier transform of a real odd sequence of length 2n. In
this case the xj are arbitrary, and the symmetry only becomes apparent when the sequence is extended.
Similarly we define the cosine transform of a real sequence by

x̂k ¼
ffiffiffi
2

n

r
1
2x0 þ

Xn�1

j¼1

xj cos
�jk

n

� �
þ 1

2 �1ð Þkxn

 !

which could have been computed using the Fourier transform of a real even sequence of length 2n.

In addition to these ‘half-wave’ symmetries described above, sequences arise in practice with ‘quarter-
wave’ symmetries. We define the quarter-wave sine transform by

x̂k ¼ 1ffiffiffi
n

p
Xn�1

j¼1

xj sin
�j 2k� 1ð Þ

2n

� �
þ 1

2 �1ð Þk�1xn

 !

which could have been computed using the Fourier transform of a real sequence of length 4n of the
form

0; x1; . . . ; xn; xn�1; . . . ; x1; 0;�x1; . . . ;�xn;�xn�1; . . . ;�x1ð Þ:
Similarly we may define the quarter-wave cosine transform by

x̂k ¼ 1ffiffiffi
n

p 1
2x0 þ

Xn�1

j¼1

xj cos
�j 2k� 1ð Þ

2n

� � !

which could have been computed using the Fourier transform of a real sequence of length 4n of the
form

x0; x1; . . . ; xn�1; 0;�xn�1; . . . ;�x0;�x1; . . . ;�xn�1; 0; xn�1; . . . ; x1ð Þ:
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2.1.4 Fourier integral transforms

The usual application of the discrete Fourier transform is that of obtaining an approximation of the
Fourier integral transform

F sð Þ ¼
Z 1

�1
f tð Þ exp �i2�stð Þ dt

when f tð Þ is negligible outside some region 0; cð Þ. Dividing the region into n equal intervals we have

F sð Þ ffi c

n

Xn�1

j¼0

fj exp
�i2�sjc

n

� �

and so

Fk ffi c

n

Xn�1

j¼0

fj exp
�i2�jk

n

� �

for k ¼ 0; 1; . . . ; n� 1, where fj ¼ f jc=nð Þ and Fk ¼ F k=cð Þ.
Hence the discrete Fourier transform gives an approximation to the Fourier integral transform in the
region s ¼ 0 to s ¼ n=c.

If the function f tð Þ is defined over some more general interval a; bð Þ, then the integral transform can
still be approximated by the discrete transform provided a shift is applied to move the point a to the
origin.

2.1.5 Convolutions and correlations

One of the most important applications of the discrete Fourier transform is to the computation of the
discrete convolution or correlation of two vectors x and y defined (as in Brigham (1974)) by

convolution: zk ¼
Xn�1

j¼0

xjyk�j

correlation: wk ¼
Xn�1

j¼0

�xjykþj

(Here x and y are assumed to be periodic with period n.)

Under certain circumstances (see Brigham (1974)) these can be used as approximations to the
convolution or correlation integrals defined by

z sð Þ ¼
Z 1

�1
x tð Þy s� tð Þ dt

and

w sð Þ ¼
Z 1

�1
�x tð Þy sþ tð Þ dt; �1 < s < 1:

For more general advice on the use of Fourier transforms, see Hamming (1962); more detailed
information on the fast Fourier transform algorithm can be found in Gentleman and Sande (1966) and
Brigham (1974).

2.1.6 Applications to solving partial differential equations (PDEs)

A further application of the fast Fourier transform, and in particular of the Fourier transforms of
symmetric sequences, is in the solution of elliptic PDEs. If an equation is discretized using finite
differences, then it is possible to reduce the problem of solving the resulting large system of linear
equations to that of solving a number of tridiagonal systems of linear equations. This is accomplished
by uncoupling the equations using Fourier transforms, where the nature of the boundary conditions
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determines the choice of transforms – see Section 3.3. Full details of the Fourier method for the
solution of PDEs may be found in Swarztrauber (1977) and Swarztrauber (1984).

2.2 Fast Gauss Transform

Gauss transforms have applications in areas including statistics, machine learning, and numerical
solution of the heat equation. The discrete Gauss transform (DGT), G yð Þ, evaluated at a set of target
points y jð Þ, for j ¼ 1; 2; . . . ;m 2 Rd, is defined as:

G yj
� � ¼Xn

i¼1

qie
� yj�xik k2

2
=h2

i ; j ¼ 1; . . . ;m

where xi, for i ¼ 1; 2; . . . ; n 2 Rd, are the Gaussian source points, qi, for i ¼ 1; 2; . . . ; n 2 Rþ, are the
source weights and hi, for i ¼ 1; 2; . . . ; n 2 Rþ, are the source standard deviations (alternatively source
scales or source bandwidths).

The fast Gauss transform (FGT) algorithm presented in Raykar and Duraiswami (2005) approximates
the DGT by using two Taylor series and clustering of the source points.

2.3 Direct Summation of Orthogonal Series

For any series of functions �i which satisfy a recurrence

�rþ1 xð Þ þ �r xð Þ�r xð Þ þ �r xð Þ�r�1 xð Þ ¼ 0

the sum

Xn
r¼0

ar�r xð Þ

is given by

Xn
r¼0

ar�r xð Þ ¼ b0 xð Þ�0 xð Þ þ b1 xð Þ �1 xð Þ þ �0 xð Þ�0 xð Þð Þ

where

br xð Þ þ �r xð Þbrþ1 xð Þ þ �rþ1 xð Þbrþ2 xð Þ ¼ arbnþ1 xð Þ ¼ bnþ2 xð Þ ¼ 0:

This may be used to compute the sum of the series. For further reading, see Hamming (1962).

3 Recommendations on Choice and Use of Available Functions

The fast Fourier transform algorithm ceases to be ‘fast’ if applied to values of n which cannot be
expressed as a product of small prime factors. All the FFT functions in this chapter are particularly
efficient if the only prime factors of n are 2, 3 or 5.

3.1 One-dimensional Fourier Transforms

The choice of function is determined first of all by whether the data values constitute a real, Hermitian
or general complex sequence. It is wasteful of time and storage to use an inappropriate function.

3.1.1 Real and Hermitian data

nag_sum_fft_realherm_1d (c06pac) transforms a single sequence of real data onto (and in-place) a
representation of the transformed Hermitian sequence using the complex storage scheme described in
Section 2.1.2. nag_sum_fft_realherm_1d (c06pac) also performs the inverse transform using the
representation of Hermitian data and transforming back to a real data sequence.

Alternatively, the two-dimensional function nag_sum_fft_real_2d (c06pvc) can be used (on setting the
second dimension to 1) to transform a sequence of real data onto an Hermitian sequence whose first
half is stored in a separate Complex array. The second half need not be stored since these are the
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complex conjugate of the first half in reverse order. nag_sum_fft_hermitian_2d (c06pwc) performs the
inverse operation, transforming the the Hermitian sequence (half-)stored in a Complex array onto a
separate real array.

3.1.2 Complex data

nag_sum_fft_complex_1d (c06pcc) transforms a single complex sequence in-place; it also performs
the inverse transform. nag_sum_fft_complex_1d_multi (c06psc) transforms multiple complex
sequences, each stored sequentially; it also performs the inverse transform on multiple complex
sequences. This function is designed to perform several transforms in a single call, all with the same
value of n.

If extensive use is to be made of these functions and you are concerned about efficiency, you are
advised to conduct your own timing tests.

3.2 Half- and Quarter-wave Transforms

Four functions are provided for computing fast Fourier transforms (FFTs) of real symmetric sequences.
nag_sum_fft_sine (c06rec) computes multiple Fourier sine transforms, nag_sum_fft_cosine (c06rfc)
computes multiple Fourier cosine transforms, nag_sum_fft_qtrsine (c06rgc) computes multiple
quarter-wave Fourier sine transforms, and nag_sum_fft_qtrcosine (c06rhc) computes multiple quarter-
wave Fourier cosine transforms.

3.3 Application to Elliptic Partial Differential Equations

As described in Section 2.1.6, Fourier transforms may be used in the solution of elliptic PDEs.

nag_sum_fft_sine (c06rec) may be used to solve equations where the solution is specified along the
boundary.

nag_sum_fft_cosine (c06rfc) may be used to solve equations where the derivative of the solution is
specified along the boundary.

nag_sum_fft_qtrsine (c06rgc) may be used to solve equations where the solution is specified on the
lower boundary, and the derivative of the solution is specified on the upper boundary.

nag_sum_fft_qtrcosine (c06rhc) may be used to solve equations where the derivative of the solution is
specified on the lower boundary, and the solution is specified on the upper boundary.

For equations with periodic boundary conditions the full-range Fourier transforms computed by
nag_sum_fft_realherm_1d (c06pac) are appropriate.

3.4 Multidimensional Fourier Transforms

The following functions compute multidimensional discrete Fourier transforms of real, Hermitian and
complex data stored in Complex arrays:

double Hermitian Complex
2 dimensions c06pvc c06pwc c06puc
3 dimensions c06pyc c06pzc c06pxc
any number of dimensions c06pjc

The Hermitian data, either transformed from or being transformed to real data, is compacted (due to
symmetry) along its first dimension when stored in Complex arrays; thus approximately half the full
Hermitian data is stored.

nag_sum_fft_complex_2d (c06puc) and nag_fft_3d (c06pxc) should be used in preference to
nag_fft_multid_full (c06pjc) for two- and three-dimensional transforms, as they are easier to use and
are likely to be more efficient.

The transform of multidimensional real data is stored as a complex sequence that is Hermitian in its
leading dimension. The inverse transform takes such a complex sequence and computes the real
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transformed sequence. Consequently, separate functions are provided for performing forward and
inverse transforms.

nag_sum_fft_real_2d (c06pvc) performs the forward two-dimensionsal transform while nag_
sum_fft_hermitian_2d (c06pwc) performs the inverse of this transform.

nag_sum_fft_real_3d (c06pyc) performs the forward three-dimensional transform while nag_
sum_fft_hermitian_3d (c06pzc) performs the inverse of this transform.

The complex sequences computed by nag_sum_fft_real_2d (c06pvc) and nag_sum_fft_real_3d
(c06pyc) contain roughly half of the Fourier coefficients; the remainder can be reconstructed by
conjugation of those computed. For example, the Fourier coefficients of the two-dimensional transform
ẑ n1�k1ð Þk2 are the complex conjugate of ẑk1k2 for k1 ¼ 0; 1; . . . ; n1=2, and k2 ¼ 0; 1; . . . ; n2 � 1.

3.5 Convolution and Correlation

nag_sum_convcorr_real (c06fkc) computes either the discrete convolution or the discrete correlation
of two real vectors.

3.6 Fast Gauss Transform

The only function available is nag_sum_fast_gauss (c06sac). If the dimensionality of the data is low or
the number of source and target points is small, however, it may be more efficient to evaluate the
discrete Gauss transform directly.

3.7 Direct Summation of Orthogonal Series

The only function available is nag_sum_cheby_series (c06dcc), which sums a finite Chebyshev series

Xn
j¼0

cjTj xð Þ;
Xn
j¼0

cjT2j xð Þ or
Xn
j¼0

cjT2jþ1 xð Þ

depending on the choice of argument.

4 Decision Trees

Tree 1: Fourier Transform of Discrete Complex Data

Is the data one-dimensional?
yes

Multiple vectors?
yes

c06psc

no

c06pcc

no

Is the data two-dimensional?
yes

c06puc

no

Is the data three-dimensional?
yes

c06pxc

no

Transform on one dimension only?
yes

c06pfc

no

Transform on all dimensions?
yes

c06pjc
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Tree 2: Fourier Transform of Real Data or Data in Complex Hermitian Form Resulting from the
Transform of Real Data

Quarter-wave sine (inverse) transform?
yes

c06rgc

no

Quarter-wave cosine (inverse)
transform? yes

c06rhc

no

Sine (inverse) transform?
yes

c06rec

no

Cosine (inverse) transform?
yes

c06rfc

no

Is the data three-dimensional?
yes

Forward transform on real data?
yes

c06pyc

no

Inverse transform on Hermitian data?
yes

c06pzc

no

Is the data two-dimensional?
yes

Forward transform on real data?
yes

c06pvc

no

Inverse transform on Hermitian data?
yes

c06pwc

no

Is the data multi one-dimensional?
yes

Sequences stored by row?
yes

c06fpc, c06fqc

no

Sequences stored by column?
yes

c06pac (repeated calls)

no

c06pac

5 Functionality Index

Complex conjugate,
multiple Hermitian sequences ....................................... nag_multiple_conjugate_hermitian (c06gqc)

Complex sequence from Hermitian sequences ............... nag_multiple_hermitian_to_complex (c06gsc)

Compute trigonometric functions .................................................................... nag_fft_init_trig (c06gzc)

Convolution or Correlation,
real vectors,

time-saving ................................................................................. nag_sum_convcorr_real (c06fkc)

Discrete Fourier Transform,
multidimensional,

complex sequence,
complex storage ............................................................................ nag_fft_multid_full (c06pjc)

multiple half- and quarter-wave transforms,
Fourier cosine transforms, simple use ............................................. nag_sum_fft_cosine (c06rfc)
Fourier sine transforms, simple use .................................................... nag_sum_fft_sine (c06rec)
quarter-wave cosine transforms, simple use ............................... nag_sum_fft_qtrcosine (c06rhc)
quarter-wave sine transforms, simple use ....................................... nag_sum_fft_qtrsine (c06rgc)

one-dimensional,
multiple transforms,

complex sequence,
complex storage by columns ............................. nag_sum_fft_complex_1d_multi (c06psc)

Hermitian sequence,
real storage by rows ................................................... nag_fft_multiple_hermitian (c06fqc)

real sequence,
real storage by rows ............................................................ nag_fft_multiple_real (c06fpc)
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multi-variable,
complex sequence,

complex storage .................................................................. nag_fft_multid_single (c06pfc)
single transforms,

complex sequence,
time-saving,

complex storage ...................................................... nag_sum_fft_complex_1d (c06pcc)
Hermitian/real sequence,

time-saving,
complex storage ...................................................... nag_sum_fft_realherm_1d (c06pac)

three-dimensional,
complex sequence,

complex storage ........................................................................................ nag_fft_3d (c06pxc)
Hermitian/real sequence,

complex-to-real ................................................................ nag_sum_fft_hermitian_3d (c06pzc)
real-to-complex ......................................................................... nag_sum_fft_real_3d (c06pyc)

two-dimensional,
complex sequence,

complex storage ................................................................ nag_sum_fft_complex_2d (c06puc)
Hermitian/real sequence,

complex-to-real ............................................................... nag_sum_fft_hermitian_2d (c06pwc)
real-to-complex ......................................................................... nag_sum_fft_real_2d (c06pvc)

Fast Gauss Transform ................................................................................ nag_sum_fast_gauss (c06sac)

Summation of Chebyshev series ........................................................... nag_sum_cheby_series (c06dcc)

6 Auxiliary Functions Associated with Library Function Arguments

None.

7 Functions Withdrawn or Scheduled for Withdrawal

The following lists all those functions that have been withdrawn since Mark 23 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Function

Mark of
Withdrawal Replacement Function(s)

nag_fft_real (c06eac) 26 nag_sum_fft_realherm_1d (c06pac)
nag_fft_hermitian (c06ebc) 26 nag_sum_fft_realherm_1d (c06pac)
nag_fft_complex (c06ecc) 26 nag_sum_fft_complex_1d (c06pcc)
nag_convolution_real (c06ekc) 26 nag_sum_convcorr_real (c06fkc)
nag_fft_multiple_complex (c06frc) 26 nag_sum_fft_complex_1d_multi (c06psc)
nag_fft_2d_complex (c06fuc) 26 nag_sum_fft_complex_2d (c06puc)
nag_conjugate_hermitian (c06gbc) 26 No replacement required
nag_conjugate_complex (c06gcc) 26 No replacement required
nag_fft_multiple_sine (c06hac) 26 nag_sum_fft_sine (c06rec)
nag_fft_multiple_cosine (c06hbc) 26 nag_sum_fft_cosine (c06rfc)
nag_fft_multiple_qtr_sine (c06hcc) 26 nag_sum_fft_qtrsine (c06rgc)
nag_fft_multiple_qtr_cosine (c06hdc) 26 nag_sum_fft_qtrcosine (c06rhc)
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