NAG AD Library Routine Document

e04gb_a1w_f (lsq_uncon_quasi_deriv_comp_a1w)


Note: _a1w_ denotes that first order adjoints are computed in working precision; this has the corresponding argument type nagad_a1w_w_rtype. Further implementations, for example for higher order differentiation or using the tangent linear approach, may become available at later marks of the NAG AD Library. The method of codifying AD implementations in routine name and corresponding argument types is described in the NAG AD Library Introduction.

1
Purpose

e04gb_a1w_f is the adjoint version of the primal routine e04gbf . Depending on the value of ad_handle, e04gb_a1w_f uses algorithmic differentiation or symbolic adjoints to compute adjoints of the primal.

2
Specification

Fortran Interface
Subroutine e04gb_a1w_f (ad_handle, m, n, lsqlin, lsqfun, lsqmon, iprint, maxcal, eta, xtol, stepmx, x, fsumsq, fvec, fjac, ldfjac, s, v, ldv, niter, nf, iuser, ruser, ifail)
Integer, Intent (In):: m, n, iprint, maxcal, ldfjac, ldv
Integer, Intent (Inout):: iuser(*), ifail
Integer, Intent (Out):: niter, nf
Type (nagad_a1w_w_rtype), Intent (In):: eta, xtol, stepmx
Type (nagad_a1w_w_rtype), Intent (Inout):: x(n), fjac(ldfjac,n), v(ldv,n), ruser(*)
Type (nagad_a1w_w_rtype), Intent (Out):: fsumsq, fvec(m), s(n)
Type (c_ptr), Intent (In):: ad_handle
External:: lsqlin, lsqfun, lsqmon
Function lsqlin (ad_handle, selct)
Integer, Intent (Out):: selct
Type (c_ptr), Intent (In):: ad_handle
Subroutine lsqfun (ad_handle, iflag, m, n, xc, fvec, fjac, ldfjac, iuser, ruser)
Integer, Intent (In):: m, n, ldfjac
Integer, Intent (Inout):: iflag, iuser(*)
Type (nagad_a1w_w_rtype), Intent (Inout):: xc(n), fjac(ldfjac,n), ruser(*), fvec(m)
Type (c_ptr), Intent (In):: ad_handle
Subroutine lsqmon (ad_handle, m, n, xc, fvec, fjac, ldfjac, s, igrade, niter, nf, iuser, ruser)
Integer, Intent (In):: m, n, ldfjac, igrade, niter, nf
Integer, Intent (Inout):: iuser(*)
Type (nagad_a1w_w_rtype), Intent (Inout):: xc(n), fvec(m), fjac(ldfjac,n), s(n), ruser(*)
Type (c_ptr), Intent (In):: ad_handle
C++ Header Interface
#include <nagad.h>
void e04gb_a1w_f_ (void *&ad_handle, const Integer &m, const Integer &n,
void (NAG_CALL lsqlin)(void *&ad_handle, Integer &selct),
void (NAG_CALL lsqfun)(void *&ad_handle, Integer &iflag, const Integer &m, const Integer &n, nagad_a1w_w_rtype xc[], nagad_a1w_w_rtype fvec[], nagad_a1w_w_rtype fjac[], const Integer &ldfjac, Integer iuser[], nagad_a1w_w_rtype ruser[]),
void (NAG_CALL lsqmon)(void *&ad_handle, const Integer &m, const Integer &n, nagad_a1w_w_rtype xc[], nagad_a1w_w_rtype fvec[], nagad_a1w_w_rtype fjac[], const Integer &ldfjac, nagad_a1w_w_rtype s[], const Integer &igrade, const Integer &niter, const Integer &nf, Integer iuser[], nagad_a1w_w_rtype ruser[]),
const Integer &iprint, const Integer &maxcal, const nagad_a1w_w_rtype &eta, const nagad_a1w_w_rtype &xtol, const nagad_a1w_w_rtype &stepmx, nagad_a1w_w_rtype x[], nagad_a1w_w_rtype &fsumsq, nagad_a1w_w_rtype fvec[], nagad_a1w_w_rtype fjac[], const Integer &ldfjac, nagad_a1w_w_rtype s[], nagad_a1w_w_rtype v[], const Integer &ldv, Integer &niter, Integer &nf, Integer iuser[], nagad_a1w_w_rtype ruser[], Integer &ifail)

3
Description

e04gbf is a comprehensive quasi-Newton algorithm for finding an unconstrained minimum of a sum of squares of m nonlinear functions in n variables mn. First derivatives are required. The routine is intended for functions which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities). For further information see Section 3 in the documentation for e04gbf .

3.1
Symbolic Adjoint

e04gb_a1w_f can provide symbolic adjoints by setting the symbolic mode as described in Section 3.2.2 in the X10 Chapter Introduction. Please see Section 4 in NAG AD Library Introduction for API description on how to use symbolic adjoints.
In comparison to the algorithmic adjoint, the user-supplied primal and adjoint callbacks need specific implementation to support symbolic adjoint computation. Please see Section 4.2.3 in NAG AD Library Introduction and recall what primal and adjoint callbacks need to calculate in the case of an algorithmic adjoint.
Assuming the original user-supplied function evaluates
z,g = fx,p, x fx,p , (1)
where p is given by the w or by use of COMMON globals. The variables x, z and g correspond to xc, fvec and fjac of lsqfun. The symbolic adjoint of e04gbf then also requires the following capability / modes:
(a) Function value evaluation only.
(b) Function value evaluation and adjoint computation w.r.t. xc only (corresponds to x in the following equation), i.e.,
x1 + = x fx,p T z1 + x 2 fx,p T g1 (2)
(c) Function value evaluation and adjoint computation w.r.t. p only, i.e.,
p1 + = p fx,p T z1 + x,p 2 fx,p T g1 . (3)
Here p is a placeholder for any user variable either passed via the user segment of w or via COMMON global variables.

3.1.1
Mathematical Background

To be more specific, the symbolic adjoint solves
x 2 Fx,p z = -x1 (4)
followed by an adjoint projection through the user-supplied adjoint routine
p1k = j=1 n 2 Fx,p xj pk zj = 2 j=1 n i=1 m fi pk fi xj zj + fi 2 fi xj pk zj . (5)
The Hessian x 2 Fx,p  as well as the mixed derivative tensor d2 Fx,p dxj dpk  is computed using the user-supplied adjoint routine.
Please see Du Toit and Naumann (2017), Naumann et al. (2017) and Giles (2017) for reference.

3.1.2
Usable Adjoints

You can set or access the adjoints of output arguments x, fvec, fjac and fsumsq. The adjoints of all other output arguments are ignored.
e04gb_a1w_f increments the adjoints of the variable p, where p is given by the argument w or by use of COMMON globals (see (1)).

4
References

Du Toit J, Naumann U (2017) Adjoint Algorithmic Differentiation Tool Support for Typical Numerical Patterns in Computational Finance
Giles M (2017) Collected Matrix Derivative Results for Forward and Reverse Mode Algorithmic Differentiation
Naumann U, Lotz J, Leppkes K and Towara M (2017) Algorithmic Differentiation of Numerical Methods: Tangent and Adjoint Solvers for Parameterized Systems of Nonlinear Equations

5
Arguments

e04gb_a1w_f provides access to all the arguments available in the primal routine. There are also additional arguments specific to AD. A tooltip popup for each argument can be found by hovering over the argument name in Section 2 and a summary of the arguments are provided below:

6
Error Indicators and Warnings

e04gb_a1w_f preserves all error codes from e04gbf and in addition can return:
ifail=-89
An unexpected AD error has been triggered by this routine. Please contact NAG.
See Section 5.2 in the NAG AD Library Introduction for further information.
ifail=-899
Dynamic memory allocation failed for AD.
See Section 5.1 in the NAG AD Library Introduction for further information.
In symbolic mode the following may be returned:
ifail=5
In attempting to compute the symbolic adjoint a singular Hessian was encountered and the computation could not proceed.
ifail=6
In attempting to compute the symbolic adjoint a Hessian was encountered with reciprocal condition number less than machine precision; the computation did therefore not proceed.

7
Accuracy

Not applicable.

8
Parallelism and Performance

e04gb_a1w_f is not threaded in any implementation.

9
Further Comments

None.

10
Example

The following examples are variants of the example for e04gbf , modified to demonstrate calling the NAG AD Library.
LanguageSource FileDataResults
Fortane04gb_a1w_fe.f90e04gb_a1w_fe.de04gb_a1w_fe.r
C++e04gb_a1w_hcppe.cppe04gb_a1w_hcppe.de04gb_a1w_hcppe.r