```/* nag_zgemm (f16zac) Example Program.
*
* Copyright 2017 Numerical Algorithms Group.
*
* Mark 26.2, 2017.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf16.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Complex alpha, beta;
Integer exit_status, i, j, k, m, n, pda, pdb, pdc;

/* Arrays */
Complex *a = 0, *b = 0, *c = 0;
char nag_enum_arg[40];

/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_TransType transa;
Nag_TransType transb;

#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J-1)*pda + I - 1]
#define B(I, J) b[(J-1)*pdb + I - 1]
#define C(I, J) c[(J-1)*pdc + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I-1)*pda + J - 1]
#define B(I, J) b[(I-1)*pdb + J - 1]
#define C(I, J) c[(I-1)*pdc + J - 1]
order = Nag_RowMajor;
#endif

exit_status = 0;
INIT_FAIL(fail);

printf("nag_zgemm (f16zac) Example Program Results\n\n");

/* Skip heading in data file */
scanf("%*[^\n] ");

/* Read the problem dimensions */
scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &m, &n, &k);

/* Read the transpose parameters */
scanf("%39s%*[^\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
transa = (Nag_TransType) nag_enum_name_to_value(nag_enum_arg);
scanf("%39s%*[^\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
transb = (Nag_TransType) nag_enum_name_to_value(nag_enum_arg);
scanf(" ( %lf , %lf ) ( %lf , %lf )%*[^\n] ",
&alpha.re, &alpha.im, &beta.re, &beta.im);

#ifdef NAG_COLUMN_MAJOR
pdc = m;
if (transa == Nag_NoTrans && transb == Nag_NoTrans) {
pda = m;
pdb = k;
}
else if ((transa == Nag_Trans || transa == Nag_ConjTrans)
&& transb == Nag_NoTrans) {
pda = k;
pdb = k;
}
else if (transa == Nag_NoTrans &&
(transb == Nag_Trans || transb == Nag_ConjTrans)) {
pda = m;
pdb = n;
}
else {
pda = k;
pdb = n;
}
#else
pdc = n;
if (transa == Nag_NoTrans && transb == Nag_NoTrans) {
pda = k;
pdb = n;
}
else if ((transa == Nag_Trans || transa == Nag_ConjTrans)
&& transb == Nag_NoTrans) {
pda = m;
pdb = n;
}
else if (transa == Nag_NoTrans &&
(transb == Nag_Trans || transb == Nag_ConjTrans)) {
pda = k;
pdb = k;
}
else {
pda = m;
pdb = k;
}
#endif

if (m > 0 && n > 0) {
/* Allocate memory */
if (!(a = NAG_ALLOC(m * k, Complex)) ||
!(b = NAG_ALLOC(n * k, Complex)) || !(c = NAG_ALLOC(m * n, Complex)))
{
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
}
else {
printf("Invalid m, n or k\n");
exit_status = 1;
return exit_status;
}

/* Input matrix A */
if (transa == Nag_NoTrans) {
for (i = 1; i <= m; ++i) {
for (j = 1; j <= k; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
}
scanf("%*[^\n] ");
}
else {
for (i = 1; i <= k; ++i) {
for (j = 1; j <= m; ++j)
scanf(" ( %lf , %lf )", &A(i, j).re, &A(i, j).im);
}
scanf("%*[^\n] ");
}

/* Input matrix B */
if (transb == Nag_NoTrans) {
for (i = 1; i <= k; ++i) {
for (j = 1; j <= n; ++j)
scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
}
scanf("%*[^\n] ");
}
else {
for (i = 1; i <= n; ++i) {
for (j = 1; j <= k; ++j)
scanf(" ( %lf , %lf )", &B(i, j).re, &B(i, j).im);
}
scanf("%*[^\n] ");
}

/* Input matrix C */
for (i = 1; i <= m; ++i) {
for (j = 1; j <= n; ++j)
scanf(" ( %lf , %lf )", &C(i, j).re, &C(i, j).im);
}
scanf("%*[^\n] ");

/* nag_zgemm (f16zac).
* Complex matrix-matrix multiply.
*
*/
nag_zgemm(order, transa, transb, m, n, k, alpha, a, pda,
b, pdb, beta, c, pdc, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_zgemm.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print result */
/* nag_gen_complx_mat_print (x04dac).
* Print Complex general matrix (easy-to-use)
*/
fflush(stdout);
nag_gen_complx_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, n, c, pdc, "Matrix Matrix Product", 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_gen_complx_mat_print (x04dac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(c);

return exit_status;
}
```