Example description
/* nag_pde_parab_1d_coll (d03pdc) Example Program.
 *
 * Copyright 2017 Numerical Algorithms Group.
 *
 * Mark 26.2, 2017.
 */

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>

#ifdef __cplusplus
extern "C"
{
#endif
  static void NAG_CALL uinit(Integer, Integer, const double[], double[],
                             Nag_Comm *);
  static void NAG_CALL pdedef(Integer, double, const double[], Integer,
                              const double[], const double[], double[],
                              double[], double[], Integer *, Nag_Comm *);
  static void NAG_CALL bndary(Integer, double, const double[], const double[],
                              Integer, double[], double[], Integer *,
                              Nag_Comm *);
#ifdef __cplusplus
}
#endif

#define U(I, J)       u[npde*((J) -1)+(I) -1]
#define UOUT(I, J, K) uout[npde*(intpts*((K) -1)+(J) -1)+(I) -1]
#define P(I, J, K)    p[npde*(npde*((K) -1)+(J) -1)+(I) -1]
#define Q(I, J)       q[npde*((J) -1)+(I) -1]
#define R(I, J)       r[npde*((J) -1)+(I) -1]
#define UX(I, J)      ux[npde*((J) -1)+(I) -1]

int main(void)
{
  const Integer nbkpts = 10, nelts = nbkpts - 1, npde = 2, npoly = 3,
         m = 0, itype = 1, npts = nelts * npoly + 1, neqn = npde * npts,
         intpts = 6, npl1 = npoly + 1, lisave = neqn + 24,
         mu = npde * (npoly + 1) - 1, lenode = (3 * mu + 1) * neqn,
         nwkres =
         3 * npl1 * npl1 + npl1 * (npde * npde + 6 * npde + nbkpts + 1)
         + 13 * npde + 5, lrsave = 11 * neqn + 50 + nwkres + lenode;

  static double ruser[3] = { -1.0, -1.0, -1.0 };
  static double xout[6] = { -1., -.6, -.2, .2, .6, 1. };
  double acc, tout, ts;
  Integer exit_status = 0, i, ind, it, itask, itrace;

  double *rsave = 0, *u = 0, *uout = 0, *x = 0, *xbkpts = 0;
  Integer *isave = 0;
  NagError fail;
  Nag_Comm comm;
  Nag_D03_Save saved;

  INIT_FAIL(fail);

  printf("nag_pde_parab_1d_coll (d03pdc) Example Program Results\n\n");

  /* For communication with user-supplied functions: */
  comm.user = ruser;

  /* Allocate memory */

  if (!(rsave = NAG_ALLOC(lrsave, double)) ||
      !(u = NAG_ALLOC(npde * npts, double)) ||
      !(uout = NAG_ALLOC(npde * intpts * itype, double)) ||
      !(x = NAG_ALLOC(npts, double)) ||
      !(xbkpts = NAG_ALLOC(nbkpts, double)) ||
      !(isave = NAG_ALLOC(lisave, Integer)))
  {
    printf("Allocation failure\n");
    exit_status = 1;
    goto END;
  }

  acc = 1e-4;
  itrace = 0;

  /* Set the break-points */

  for (i = 0; i < 10; ++i) {
    xbkpts[i] = i * 2.0 / 9.0 - 1.0;
  }

  ind = 0;
  itask = 1;
  ts = 0.0;
  tout = 1e-5;
  printf(" Polynomial degree =%4" NAG_IFMT "", npoly);
  printf("   No. of elements = %4" NAG_IFMT "\n\n", nelts);
  printf(" Accuracy requirement = %12.3e", acc);
  printf("  Number of points = %5" NAG_IFMT "\n\n", npts);
  printf("  t /   x   ");

  for (i = 0; i < 6; ++i) {
    printf("%8.4f", xout[i]);
    printf((i + 1) % 6 == 0 || i == 5 ? "\n" : "");
  }
  printf("\n");

  /* Loop over output values of t */

  for (it = 0; it < 5; ++it) {
    tout *= 10.0;

    /* nag_pde_parab_1d_coll (d03pdc).
     * General system of parabolic PDEs, method of lines,
     * Chebyshev C^0 collocation, one space variable
     */
    nag_pde_parab_1d_coll(npde, m, &ts, tout, pdedef, bndary, u, nbkpts,
                          xbkpts, npoly, npts, x, uinit, acc, rsave, lrsave,
                          isave, lisave, itask, itrace, 0, &ind, &comm,
                          &saved, &fail);

    if (fail.code != NE_NOERROR) {
      printf("Error from nag_pde_parab_1d_coll (d03pdc).\n%s\n",
             fail.message);
      exit_status = 1;
      goto END;
    }

    /* Interpolate at required spatial points */

    /* nag_pde_interp_1d_coll (d03pyc).
     * PDEs, spatial interpolation with nag_pde_parab_1d_coll
     * (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc)
     */
    nag_pde_interp_1d_coll(npde, u, nbkpts, xbkpts, npoly, npts, xout,
                           intpts, itype, uout, rsave, lrsave, &fail);

    if (fail.code != NE_NOERROR) {
      printf("Error from nag_pde_interp_1d_coll (d03pyc).\n%s\n",
             fail.message);
      exit_status = 1;
      goto END;
    }

    printf("\n %6.4f u(1)", tout);

    for (i = 1; i <= 6; ++i) {
      printf("%8.4f", UOUT(1, i, 1));
      printf(i % 6 == 0 || i == 6 ? "\n" : "");
    }

    printf("        u(2)");

    for (i = 1; i <= 6; ++i) {
      printf("%8.4f", UOUT(2, i, 1));
      printf(i % 6 == 0 || i == 6 ? "\n" : "");
    }
  }

  /* Print integration statistics */

  printf("\n");
  printf(" Number of integration steps in time                    ");
  printf("%4" NAG_IFMT "\n", isave[0]);
  printf(" Number of residual evaluations of resulting ODE system ");
  printf("%4" NAG_IFMT "\n", isave[1]);
  printf(" Number of Jacobian evaluations                         ");
  printf("%4" NAG_IFMT "\n", isave[2]);
  printf(" Number of iterations of nonlinear solver               ");
  printf("%4" NAG_IFMT "\n", isave[4]);

END:
  NAG_FREE(rsave);
  NAG_FREE(u);
  NAG_FREE(uout);
  NAG_FREE(x);
  NAG_FREE(xbkpts);
  NAG_FREE(isave);

  return exit_status;
}

static void NAG_CALL uinit(Integer npde, Integer npts, const double x[],
                           double u[], Nag_Comm *comm)
{
  Integer i;
  double piby2;

  if (comm->user[0] == -1.0) {
    printf("(User-supplied callback uinit, first invocation.)\n");
    comm->user[0] = 0.0;
  }
  piby2 = 0.5 * nag_pi;
  for (i = 1; i <= npts; ++i) {
    U(1, i) = -sin(piby2 * x[i - 1]);
    U(2, i) = -piby2 * piby2 * U(1, i);
  }
  return;
}

static void NAG_CALL pdedef(Integer npde, double t, const double x[],
                            Integer nptl, const double u[], const double ux[],
                            double p[], double q[], double r[], Integer *ires,
                            Nag_Comm *comm)
{
  Integer i;

  if (comm->user[1] == -1.0) {
    printf("(User-supplied callback pdedef, first invocation.)\n");
    comm->user[1] = 0.0;
  }
  for (i = 1; i <= nptl; ++i) {
    Q(1, i) = U(2, i);
    Q(2, i) = U(1, i) * UX(2, i) - UX(1, i) * U(2, i);
    R(1, i) = UX(1, i);
    R(2, i) = UX(2, i);
    P(1, 1, i) = 0.0;
    P(1, 2, i) = 0.0;
    P(2, 1, i) = 0.0;
    P(2, 2, i) = 1.0;
  }
  return;
}

static void NAG_CALL bndary(Integer npde, double t, const double u[],
                            const double ux[], Integer ibnd, double beta[],
                            double gamma[], Integer *ires, Nag_Comm *comm)
{
  if (comm->user[2] == -1.0) {
    printf("(User-supplied callback bndary, first invocation.)\n");
    comm->user[2] = 0.0;
  }
  if (ibnd == 0) {
    beta[0] = 1.0;
    gamma[0] = 0.0;
    beta[1] = 0.0;
    gamma[1] = u[0] - 1.0;
  }
  else {
    beta[0] = 1.0;
    gamma[0] = 0.0;
    beta[1] = 0.0;
    gamma[1] = u[0] + 1.0;
  }
  return;
}