nag_pde_parab_1d_keller (d03pec) Example Program Results Accuracy requirement = 1.000e-06 Number of points = 41 x 0.1000 0.3000 0.5000 0.7000 0.9000 (User-supplied callback bndary, first invocation.) (User-supplied callback pdedef, first invocation.) t = 0.20 Approx u1 0.7845 1.0010 1.2733 1.6115 2.0281 Exact u1 0.7845 1.0010 1.2733 1.6115 2.0281 Approx u2 -0.8352 -0.8159 -0.8367 -0.9128 -1.0609 Exact u2 -0.8353 -0.8160 -0.8367 -0.9129 -1.0609 t = 0.40 Approx u1 0.6481 0.8533 1.1212 1.4627 1.8903 Exact u1 0.6481 0.8533 1.1212 1.4627 1.8903 Approx u2 -1.5216 -1.6767 -1.8934 -2.1917 -2.5944 Exact u2 -1.5217 -1.6767 -1.8935 -2.1917 -2.5945 t = 0.60 Approx u1 0.6892 0.8961 1.1747 1.5374 1.9989 Exact u1 0.6892 0.8962 1.1747 1.5374 1.9989 Approx u2 -2.0047 -2.3434 -2.7677 -3.3002 -3.9680 Exact u2 -2.0048 -2.3436 -2.7678 -3.3003 -3.9680 t = 0.80 Approx u1 0.8977 1.1247 1.4320 1.8349 2.3514 Exact u1 0.8977 1.1247 1.4320 1.8349 2.3512 Approx u2 -2.3403 -2.8675 -3.5110 -4.2960 -5.2536 Exact u2 -2.3405 -2.8677 -3.5111 -4.2961 -5.2537 t = 1.00 Approx u1 1.2470 1.5206 1.8828 2.3528 2.9519 Exact u1 1.2470 1.5205 1.8829 2.3528 2.9518 Approx u2 -2.6229 -3.3338 -4.1998 -5.2505 -6.5218 Exact u2 -2.6232 -3.3340 -4.2001 -5.2507 -6.5219 Number of integration steps in time = 149 Number of function evaluations = 399 Number of Jacobian evaluations = 13 Number of iterations = 323