
NAG Library Function Document

nag_specfun_2f1_real_scaled (s22bfc)

1 Purpose

nag_specfun_2f1_real_scaled (s22bfc) returns a value for the Gauss hypergeometric function

2F1 a; b; c;xð Þ for real parameters a; b and c, and real argument x. The result is returned in the scaled
form 2F1 a; b; c;xð Þ ¼ ffr � 2fsc .

2 Specification

#include <nag.h>
#include <nags.h>

void nag_specfun_2f1_real_scaled (double ani, double adr, double bni,
double bdr, double cni, double cdr, double x, double *frf, Integer *scf,
NagError *fail)

3 Description

nag_specfun_2f1_real_scaled (s22bfc) returns a value for the Gauss hypergeometric function

2F1 a; b; c;xð Þ for real parameters a, b and c, and for real argument x.

The Gauss hypergeometric function is a solution to the hypergeometric differential equation,

x 1� xð Þd
2f

dx2
þ c� aþ bþ 1ð Þxð Þdf

dx
� abf ¼ 0: ð1Þ

For xj j < 1, it may be defined by the Gauss series,

2F1 a; b; c; xð Þ ¼
X1
s¼0

að Þs bð Þs
cð Þss!

xs ¼ 1þ ab

c
xþ a aþ 1ð Þb bþ 1ð Þ

c cþ 1ð Þ2! x2 þ � � � ; ð2Þ

where að Þs ¼ 1 að Þ aþ 1ð Þ aþ 2ð Þ . . . aþ s� 1ð Þ is the rising factorial of a. 2F1 a; b; c; xð Þ is undefined
for c ¼ 0 or c a negative integer.

For xj j < 1, the series is absolutely convergent and 2F1 a; b; c; xð Þ is finite.

For x < 1, linear transformations of the form,

2F1 a; b; c;xð Þ ¼ C1 a1; b1; c1; x1ð Þ2F1 a1; b1; c1; x1ð Þ þ C2 a2; b2; c2; x2ð Þ2F1 a2; b2; c2; x2ð Þ ð3Þ
exist, where x1, x2 2 0; 1ð �. C1 and C2 are real valued functions of the parameters and argument,
typically involving products of gamma functions. When these are degenerate, finite limiting cases exist.
Hence for x < 0, 2F1 a; b; c;xð Þ is defined by analytic continuation, and for x < 1, 2F1 a; b; c; xð Þ is real
and finite.

For x ¼ 1, the following apply:

If c > aþ b, 2F1 a; b; c; 1ð Þ ¼ � cð Þ� c� a� bð Þ
� c� að Þ� c� bð Þ , and hence is finite. Solutions also exist for the

degenerate cases where c� a or c� b are negative integers or zero.

If c � aþ b, 2F1 a; b; c; 1ð Þ is infinite, and the sign of 2F1 a; b; c; 1ð Þ is determinable as x
approaches 1 from below.

In the complex plane, the principal branch of 2F1 a; b; c; zð Þ is taken along the real axis from x ¼ 1:0
increasing. 2F1 a; b; c; zð Þ is multivalued along this branch, and for real parameters a; b and c is typically
not real valued. As such, this function will not compute a solution when x > 1.

s – Approximations of Special Functions s22bfc

Mark 26 s22bfc.1

The solution strategy used by this function is primarily dependent upon the value of the argument x.
Once trivial cases and the case x ¼ 1:0 are eliminated, this proceeds as follows.

For 0 < x � 0:5, sets of safe parameters �i;j; �i;j; �i;j; �j 1 � j � 2j j; 1 � i � 4
� �

are determined, such
that the values of 2F1 aj; bj; cj; xj

� �
required for an appropriate transformation of the type (3) may be

calculated either directly or using recurrence relations from the solutions of 2F1 �i;j; �i;j; �i;j;�j

� �
. If c is

positive, then only transformations with C2 ¼ 0:0 will be used, implying only 2F1 a1; b1; c1; x1ð Þ will be
required, with the transformed argument x1 ¼ x. If c is negative, in some cases a transformation with
C2 6¼ 0:0 will be used, with the argument x2 ¼ 1:0� x. The function then cycles through these sets
until acceptable solutions are generated. If no computation produces an accurate answer, the least
inaccurate answer is selected to complete the computation. See Section 7.

For 0:5 < x < 1:0, an identical approach is first used with the argument x. Should this fail, a linear
transformation resulting in both transformed arguments satisfying xj ¼ 1:0� x is employed, and the
above strategy for 0 < x � 0:5 is utilized on both components. Further transformations in these sub-
computations are however limited to single terms with no argument transformation.

For x < 0, a linear transformation mapping the argument x to the interval 0; 0:5ð � is first employed. The
strategy for 0 < x � 0:5 is then used on each component, including possible further two term
transforms. To avoid some degenerate cases, a transform mapping the argument x to 0:5; 1½ Þ may also
be used.

For improved precision in the final result, this function accepts a; b and c split into an integral and a
decimal fractional component. Specifically, a ¼ ai þ ar, where arj j � 0:5 and ai ¼ a� ar is integral.
The other parameters b and c are similarly deconstructed.

In addition to the above restrictions on c and x, an artificial bound, arbnd, is placed on the magnitudes
of a; b; c and x to minimize the occurrence of overflow in internal calculations, particularly those
involving real to integer conversions. arbnd ¼ 0:0001� Imax , where Imax is the largest machine integer
(see nag_max_integer (X02BBC)). It should however not be assumed that this function will produce
accurate answers for all values of a; b; c and x satisfying this criterion.

This function also tests for non-finite values of the parameters and argument on entry, and assigns non-
finite values upon completion if appropriate. See Section 9 and Chapter x07.

Please consult the NIST Digital Library of Mathematical Functions or the companion (2010) for a
detailed discussion of the Gauss hypergeometric function including special cases, transformations,
relations and asymptotic approximations.

4 References

NIST Handbook of Mathematical Functions (2010) (eds F W J Olver, D W Lozier, R F Boisvert, C W
Clark) Cambridge University Press

Pearson J (2009) Computation of hypergeometric functions MSc Dissertation, Mathematical Institute,
University of Oxford

5 Arguments

1: ani – double Input

On entry: ai, the nearest integer to a, satisfying ai ¼ a� ar.

Constraints:

ani ¼ anib c;
anij j � arbnd.

2: adr – double Input

On entry: ar, the signed decimal remainder satisfying ar ¼ a� ai and arj j � 0:5.

Constraint: adrj j � 0:5.

s22bfc NAG Library Manual

s22bfc.2 Mark 26

http://dlmf.nist.gov/15

3: bni – double Input

On entry: bi, the nearest integer to b, satisfying bi ¼ b� br.

Constraints:

bni ¼ bnib c;
bnij j � arbnd.

4: bdr – double Input

On entry: br, the signed decimal remainder satisfying br ¼ b� bi and brj j � 0:5.

Constraint: bdrj j � 0:5.

5: cni – double Input

On entry: ci, the nearest integer to c, satisfying ci ¼ c� cr.

Constraints:

cni ¼ cnib c;
cnij j � arbnd;
if cdrj j < 16:0�, cni � 1:0.

6: cdr – double Input

On entry: cr, the signed decimal remainder satisfying cr ¼ c� ci and crj j � 0:5.

Constraint: cdrj j � 0:5.

7: x – double Input

On entry: the argument x.

Constraint: �arbnd < x � 1.

8: frf – double * Output

On exit: ffr, the scaled real component of the solution satisfying ffr ¼ 2F1 a; b; c;xð Þ � 2�fsc , i.e.,

2F1 a; b; c;xð Þ ¼ ffr � 2fsc . See Section 9 for the behaviour of ffr when a finite or non-finite
answer is returned.

9: scf – Integer * Output

On exit: fsc, the scaling power of two, satisfying fsc ¼ log2
2F1 a; b; c; xð Þ

ffr

� �
, i.e.,

2F1 a; b; c;xð Þ ¼ ffr � 2fsc . See Section 9 for the behaviour of fsc when a non-finite answer is
returned.

10: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

s – Approximations of Special Functions s22bfc

Mark 26 s22bfc.3

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_CANNOT_CALCULATE

An internal calculation has resulted in an undefined result.

NE_COMPLEX

On entry, x ¼ valueh i.
In general, 2F1 a; b; c; xð Þ is not real valued when x > 1.

NE_INFINITE

On entry, x ¼ valueh i, c ¼ valueh i, aþ b ¼ valueh i.
2F1 a; b; c; 1ð Þ is infinite in the case c � aþ b.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_OVERFLOW

Overflow occurred in a subcalculation of 2F1 a; b; c; xð Þ. The answer may be completely incorrect.

NE_REAL

On entry, adr does not satisfy adrj j � 0:5.

On entry, bdr does not satisfy bdrj j � 0:5.

On entry, cdr does not satisfy cdrj j � 0:5.

NE_REAL_2

On entry, c ¼ cniþ cdr ¼ valueh i.
2F1 a; b; c;xð Þ is undefined when c is zero or a negative integer.

NE_REAL_ARG_NON_INTEGRAL

ANI is non-integral.
On entry, ani ¼ valueh i.
Constraint: ani ¼ anib c.
bni is non-integral.
On entry, bni ¼ valueh i.
Constraint: bni ¼ bnib c.
cni is non-integral.
On entry, cni ¼ valueh i.
Constraint: cni ¼ cnib c.

NE_REAL_RANGE_CONS

On entry, ani does not satisfy anij j � arbnd ¼ valueh i.
On entry, bni does not satisfy bnij j � arbnd ¼ valueh i.

s22bfc NAG Library Manual

s22bfc.4 Mark 26

On entry, cni does not satisfy cnij j � arbnd ¼ valueh i.
On entry, x does not satisfy xj j � arbnd ¼ valueh i.

NE_TOTAL_PRECISION_LOSS

All approximations have completed, and the final residual estimate indicates no accuracy can be
guaranteed.
Relative residual ¼ valueh i.

NW_OVERFLOW_WARN

On completion, overflow occurred in the evaluation of 2F1 a; b; c; xð Þ.

NW_SOME_PRECISION_LOSS

All approximations have completed, and the final residual estimate indicates some precision may
have been lost.
Relative residual ¼ valueh i.

NW_UNDERFLOW_WARN

Underflow occurred during the evaluation of 2F1 a; b; c;xð Þ. The returned value may be
inaccurate.

7 Accuracy

In general, if fail:code ¼ NE_NOERROR, the value of 2F1 a; b; c; xð Þ may be assumed accurate, with
the possible loss of one or two decimal places. Assuming the result does not overflow, an error estimate
res is made internally using equation (1). If the magnitude of this residual res is sufficiently large, a
different fail.code will be returned. Specifically,

fail:code ¼ NE_NOERROR or NW_UNDERFLOW_WARN res � 1000�
fail:code ¼ NW_SOME_PRECISION_LOSS 1000� < res � 0:1
fail:code ¼ NE_TOTAL_PRECISION_LOSS res > 0:1

where � is the machine precision as returned by nag_machine_precision (X02AJC). Note that
underflow may also have occurred if fail:code ¼ NE_TOTAL_PRECISION_LOSS or
NW_SOME_PRECISION_LOSS.

A further estimate of the residual can be constructed using equation (1), and the differential identity,

d 2F1 a; b; c; xð Þ� �
dx

¼ ab

c 2F1 aþ 1; bþ 1; cþ 1; xð Þ
d2 2F1 a; b; c; xð Þ� �

dx2
¼ a aþ 1ð Þb bþ 1ð Þ

c cþ 1ð Þ 2F1 aþ 2; bþ 2; cþ 2; xð Þ
ð4Þ

This estimate is however dependent upon the error involved in approximating 2F1 aþ 1; bþ 1; cþ 1;xð Þ
and 2F1 aþ 2; bþ 2; cþ 2; xð Þ.

8 Parallelism and Performance

nag_specfun_2f1_real_scaled (s22bfc) is not threaded in any implementation.

9 Further Comments

nag_specfun_2f1_real_scaled (s22bfc) returns non-finite values when appropriate. See Chapter x07 for
more information on the definitions of non-finite values.

Should a non-finite value be returned, this will be indicated in the value of fail, as detailed in the
following cases.

s – Approximations of Special Functions s22bfc

Mark 26 s22bfc.5

I f fail:code ¼ NE _ NO E R ROR o r fail:code ¼ NE _ TO TA L _ P R E C I S I O N _ L O S S ,
NW_SOME_PRECISION_LOSS or NW_UNDERFLOW_WARN, a finite value will have been
returned with approximate accuracy as detailed in Section 7.

The values of ffr and fsc are implementation dependent. In most cases, if 2F1 a; b; c; xð Þ ¼ 0, ffr ¼ 0
and fsc ¼ 0 will be returned, and if 2F1 a; b; c;xð Þ is finite, the fractional component will be bound by
0:5 � ffr

�� �� < 1, with fsc chosen accordingly.

The values returned in frf (ffr) and scf (fsc) may be used to explicitly evaluate 2F1 a; b; c; xð Þ, and may
also be used to evaluate products and ratios of multiple values of 2F1 as follows,

2F1 a; b; c;xð Þ ¼ ffr � 2fsc

2F1 a1; b1; c1; x1ð Þ � 2F1 a2; b2; c2;x2ð Þ ¼ ffr1 � ffr2ð Þ � 2 fsc1þfsc2ð Þ

2F1 a1; b1; c1;x1ð Þ
2F1 a2; b2; c2;x2ð Þ ¼

ffr1
ffr2

� 2 fsc1�fsc2ð Þ

ln 2F1 a; b; c; xð Þ�� �� ¼ ln ffrj j þ fsc � ln 2ð Þ:
If fail:code ¼ NE_INFINITE then 2F1 a; b; c; xð Þ is infinite. A signed infinity will have been returned for
frf, and scf ¼ 0. The sign of frf should be correct when taking the limit as x approaches 1 from below.

If fail:code ¼ NW_OVERFLOW_WARN then upon completion, 2F1 a; b; c;xð Þ�� �� > 2Imax , where Imax is
given by nag_max_integer (X02BBC), and hence is too large to be representable even in the scaled
form. The scaled real component returned in frf may still be correct, whilst scf ¼ Imax will have been
returned.

If fail:code ¼ NE_OVERFLOW then overflow occurred during a subcalculation of 2F1 a; b; c;xð Þ. The
same result as for fail:code ¼ NW_OVERFLOW_WARN will have been returned, however there is no
guarantee that this is representative of either the magnitude of the scaling power fsc, or the scaled
component ffr of 2F1 a; b; c;xð Þ.
If fail:code ¼ NE_NOERROR, frf and scf were inaccessible to nag_specfun_2f1_real_scaled (s22bfc),
and as such it is not possible to determine what their values may be following the call to
nag_specfun_2f1_real_scaled (s22bfc).

For all other error exits, scf ¼ 0 will be returned and frf will be returned as a signalling NaN (see
nag_create_nan (x07bbc)).

If fail:code ¼ NE_CANNOT_CALCULATE an internal computation produced an undefined result. This
may occur when two terms overflow with opposite signs, and the result is dependent upon their
summation for example.

If fail:code ¼ NE_REAL_2 then c is too close to a negative integer or zero on entry, and 2F1 a; b; c;xð Þ
is undefined. Note, this will also be the case when c is a negative integer, and a (possibly trivial) linear
transformation of the form (3) would result in either:

(i) all cj not being negative integers,

(ii) for any cj which remain as negative integers, one of the corresponding parameters aj or bj is a
negative integer of magnitude less than cj.

In the first case, the transformation coefficients Cj aj; bj; cj; xj
� �

are typically either infinite or undefined,
preventing a solution being constructed. In the second case, the series (2) will terminate before the
degenerate term, resulting in a polynomial of fixed degree, and hence potentially a finite solution.

If fail:code ¼ NE_REAL_RANGE_CONS then no computation will have been performed due to the
risk of integer overflow. The actual solution may however be finite.

fail:code ¼ NE_COMPLEX indicates x > 1, and hence the requested solution is on the boundary of the
principal branch of 2F1 a; b; c; xð Þ. Hence it is multivalued, typically with a nonzero imaginary
component. It is however strictly finite.

10 Example

This example evaluates the Gauss hypergeometric function at two points in scaled form using
nag_specfun_2f1_real_scaled (s22bfc), and subsequently calculates their product and ratio implicitly.

s22bfc NAG Library Manual

s22bfc.6 Mark 26

10.1 Program Text

/* nag_specfun_2f1_real_scaled (s22bfc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <stdio.h>
#include <math.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nags.h>
#include <nagx02.h>

int main(void)
{

/* Scalars */
Integer exit_status = 0;
Integer k, imax, scf;
double ani, adr, bni, bdr, cni, cdr, delta, frf, x;
/* Arrays */
double frfv[2];
Integer scfv[2];
/* Nag Types */
Nag_Boolean finite_solutions;
NagError fail;

imax = X02BLC;
printf("nag_specfun_2f1_real_scaled (s22bfc) Example Program Results\n\n");

ani = -10.0;
bni = 2.0;
cni = -5.0;
delta = 1.0E-4;
adr = delta;
bdr = -delta;
cdr = delta;
x = 0.45;
finite_solutions = Nag_TRUE;
printf("%11s%11s%11s%11s%14s%7s%14s\n",

"a", "b", "c", "x", "frf", "scf", "2F1(a,b;c;x)");
for (k = 0; k < 2; k++) {

INIT_FAIL(fail);
/* Compute the real Gauss hypergeometric function 2F1(a,b;c;x) in scaled
* form using nag_specfun_2f1_real_scaled (s22bfc).
*/

nag_specfun_2f1_real_scaled(ani, adr, bni, bdr, cni, cdr, x,
&frf, &scf, &fail);

switch (fail.code) {
case NE_NOERROR:
case NW_UNDERFLOW_WARN:
case NW_SOME_PRECISION_LOSS:

/* A finite result has been returned. */
if (scf < imax)

printf(" %10.4f %10.4f %10.4f %10.4f %13.5e %6" NAG_IFMT " %13.5e\n",
ani + adr, bni + bdr, cni + cdr, x, frf, scf, frf * pow(2.0,

scf));
else

printf(" %10.4f %10.4f %10.4f %10.4f %13.5e %6" NAG_IFMT " %17s\n",
ani + adr, bni + bdr, cni + cdr, x, frf, scf,
"Not Representable");

frfv[k] = frf;
scfv[k] = scf;
break;

case NE_INFINITE:
/* The result is analytically infinite. */
finite_solutions = Nag_FALSE;

s – Approximations of Special Functions s22bfc

Mark 26 s22bfc.7

if (frf >= 0.0)
printf(" %10.4f %10.4f %10.4f %10.4f %13s %6" NAG_IFMT " %13s\n",

ani + adr, bni + bdr, cni + cdr, x, "Inf", scf, "Inf");
else

printf(" %10.4f %10.4f %10.4f %10.4f %13s %6" NAG_IFMT " %13s\n",
ani + adr, bni + bdr, cni + cdr, x, "-Inf", scf, "-Inf");

break;
case NW_OVERFLOW_WARN:
case NE_OVERFLOW:

/* The final result has overflowed. */
finite_solutions = Nag_FALSE;
if (frf >= 0.0)

printf(" %10.4f %10.4f %10.4f %10.4f %13.5e %6s %13s\n",
ani + adr, bni + bdr, cni + cdr, x, frf, "imax",
">pow(2,imax)");

else
printf(" %10.4f %10.4f %10.4f %10.4f %13.5e %6s %13s\n",

ani + adr, bni + bdr, cni + cdr, x, frf, "imax",
"<-pow(2,imax)");

break;
case NE_CANNOT_CALCULATE:

/* An internal calculation resulted in an undefined result. */
finite_solutions = Nag_FALSE;
printf(" %10.4f %10.4f %10.4f %10.4f %13s %6" NAG_IFMT " %13s\n",

ani + adr, bni + bdr, cni + cdr, x, "NaN", scf, "NaN");
break;

default:
/* An input error has been detected. */
printf(" %10.4f %10.4f %10.4f %10.4f %17s\n",

ani + adr, bni + bdr, cni + cdr, x, "FAILED");
exit_status = 1;
goto END;
break;

}
adr = -adr;
bdr = -bdr;
cdr = -cdr;

}
if (finite_solutions) {

/* Calculate the product M1*M2. */
frf = frfv[0] * frfv[1];
scf = scfv[0] + scfv[1];
printf("\n");
if (scf < imax)

printf("%-34s%13.5e %6" NAG_IFMT " %13.5e\n",
" Solution product", frf, scf, frf * pow(2.0, scf));

else
printf("%-34s%13.5e %6" NAG_IFMT "%17s\n",

" Solution product", frf, scf, "Not Representable");

/* Calculate the ratio M1/M2. */
if (frfv[1] != 0.0) {

frf = frfv[0] / frfv[1];
scf = scfv[0] - scfv[1];
printf("\n");
if (scf < imax)

printf("%-34s%13.5e %6" NAG_IFMT " %13.5e\n",
" Solution ratio", frf, scf, frf * pow(2.0, scf));

else
printf("%-34s%13.5e %6" NAG_IFMT "%17s\n",

" Solution ratio", frf, scf, "Not Representable");
}

}
END:

return exit_status;
}

10.2 Program Data

None.

s22bfc NAG Library Manual

s22bfc.8 Mark 26

10.3 Program Results

nag_specfun_2f1_real_scaled (s22bfc) Example Program Results

a b c x frf scf 2F1(a,b;c;x)
-9.9999 1.9999 -4.9999 0.4500 -5.44477e-01 16 -3.56828e+04

-10.0001 2.0001 -5.0001 0.4500 5.44547e-01 16 3.56875e+04

Solution product -2.96494e-01 32 -1.27343e+09

Solution ratio -9.99871e-01 0 -9.99871e-01

s – Approximations of Special Functions s22bfc

Mark 26 s22bfc.9 (last)

	s22bfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	 (2010)
	Pearson (2009)

	5 Arguments
	ani
	adr
	bni
	bdr
	cni
	cdr
	x
	frf
	scf
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CANNOT_CALCULATE
	NE_COMPLEX
	NE_INFINITE
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_OVERFLOW
	NE_REAL
	NE_REAL_2
	NE_REAL_ARG_NON_INTEGRAL
	NE_REAL_RANGE_CONS
	NE_TOTAL_PRECISION_LOSS
	NW_OVERFLOW_WARN
	NW_SOME_PRECISION_LOSS
	NW_UNDERFLOW_WARN

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

