
NAG Library Function Document

nag_mip_tsp_simann (h03bbc)

1 Purpose

nag_mip_tsp_simann (h03bbc) calculates an approximate solution to a symmetric travelling salesman
problem using simulated annealing via a configuration free interface.

2 Specification

#include <nag.h>
#include <nagh.h>

void nag_mip_tsp_simann (Integer nc, const double dm[], double bound,
double targc, Integer path[], double *cost, Integer *tmode,
double alg_stats[], Integer state[], NagError *fail)

3 Description

nag_mip_tsp_simann (h03bbc) provides a probabilistic strategy for the calculation of a near optimal
path through a symmetric and fully connected distance matrix; that is, a matrix for which element i; jð Þ
is the pairwise distance (also called the cost, or weight) between nodes (cities) i and j. This problem is
better known as the Travelling Salesman Problem (TSP), and symmetric means that the distance to
travel between two cities is independent of which is the destination city.

In the classical TSP, which this function addresses, a salesman wishes to visit a given set of cities once
only by starting and finishing in a home city and travelling the minimum total distance possible. It is
one of the most intensively studied problems in computational mathematics and, as a result, has
developed some fairly sophisticated techniques for getting near-optimal solutions for large numbers of
cities. nag_mip_tsp_simann (h03bbc) adopts a very simple approach to try to find a reasonable solution,
for moderately large problems. The function uses simulated annealing: a stochastic mechanical process
in which the heating and controlled cooling of a material is used to optimally refine its molecular
structure.

The material in the TSP is the distance matrix and a given state is represented by the order in which
each city is visited—the path. This system can move from one state to a neighbouring state by selecting
two cities on the current path at random and switching their places; the order of the cities in the path
between the switched cities is then reversed. The cost of a state is the total cost of traversing its path;
the resulting difference in cost between the current state and this new proposed state is called the delta;
a negative delta indicates the proposal creates a more optimal path and a positive delta a less optimal
path. The random selection of cities to switch uses random number generators (RNGs) from Chapter
g05; it is thus necessary to initialize a state array for the RNG of choice (by a call to
nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable (g05kgc)) prior to calling
nag_mip_tsp_simann (h03bbc).

The simulation itself is executed in two stages. In the first stage, a series of sample searches through the
distance matrix is conducted where each proposed new state is accepted, regardless of the change in
cost (delta) incurred by applying the switches, and statistics on the set of deltas are recorded. These
metrics are updated after each such sample search; the number of these searches and the number of
switches applied in each search is dependent on the number of cities. The final collated set of metrics
for the deltas obtained by the first stage are used as control parameters for the second stage. If no single
improvement in cost is found during the first stage, the algorithm is terminated.

In the second stage, as before, neighbouring states are proposed. If the resulting delta is negative or
causes no change the proposal is accepted and the path updated; otherwise moves are accepted based on
a probabilistic criterion, a modified version of the Metropolis–Hastings algorithm.

h – Operations Research h03bbc

Mark 26 h03bbc.1

The acceptance of some positive deltas (increased cost) reduces the probability of a solution getting
trapped at a non-optimal solution where any single switch causes an increase in cost. Initially the
acceptance criteria allow for relatively large positive deltas, but as the number of proposed changes
increases, the criteria become more stringent, allowing fewer positive deltas of smaller size to be
accepted; this process is, within the realm of the simulated annealing algorithm, referred to as ‘cooling’.
Further exploration of the system is initially encouraged by accepting non-optimal routes, but is
increasingly discouraged as the process continues.

The second stage will terminate when:

– a solution is obtained that is deemed acceptable (as defined by supplied values);

– the algorithm will accept no further positive deltas and a set of proposed changes have resulted
in no improvements (has cooled);

– a number of consecutive sets of proposed changes has resulted in no improvement.

4 References

Applegate D L, Bixby R E, ChvÄtal V and Cook W J (2006) The Traveling Salesman Problem: A
Computational Study Princeton University Press

Cook W J (2012) In Pursuit of the Traveling Salesman Princeton University Press

Johnson D S and McGeoch L A The traveling salesman problem: A case study in local optimization
Local search in combinatorial optimization (1997) 215–310

Press W H, Teukolsky S A, Vetterling W T and Flannery B P (2007) Numerical Recipes The Art of
Scientific Computing (3rd Edition)

Rego C, Gamboa D, Glover F and Osterman C (2011) Traveling salesman problem heuristics: leading
methods, implementations and latest advances European Journal of Operational Research 211 (3)
427–441

Reinelt G (1994) The Travelling Salesman. Computational Solutions for TSP Applications, Volume 840
of Lecture Notes in Computer Science Springer–Verlag, Berlin Heidelberg New York

5 Arguments

1: nc – Integer Input

On entry: the number of cities. In the trivial cases nc ¼ 1, 2 or 3, the function returns the optimal
solution immediately with tmode ¼ 0 (provided the relevant distance matrix entries are not
negative).

Constraint: nc � 1.

2: dm½nc� nc� – const double Input

Note: the i; jð Þth element of the matrix is stored in dm½ j� 1ð Þ � ncþ i� 1�.
On entry: the distance matrix; each dm½ j � 1ð Þ � ncþ i � 1� is the effective cost or weight
between nodes i and j. Only the strictly upper half of the matrix is referenced.

Constraint: dm½ j � 1ð Þ � ncþ i � 1� � 0:0, for j ¼ 2; 3; . . . ; nc and i ¼ 1; 2; . . . ; j � 1.

3: bound – double Input

On entry: a lower bound on the solution. If the optimum is unknown set bound to zero or a
negative value; the function will then calculate the minimum spanning tree for dm and use this as
a lower bound (returned in alg stats½5�). If an optimal value for the cost is known then this
should be used for the lower bound. A detailed discussion of relaxations for lower bounds,
including the minimal spanning tree, can be found in Reinelt (1994).

h03bbc NAG Library Manual

h03bbc.2 Mark 26

4: targc – double Input

On entry: a measure of how close an approximation needs to be to the lower bound. The function
terminates when a cost is found less than or equal to boundþ targc. This argument is useful
when an optimal value for the cost is known and supplied in bound. It may be sufficient to
obtain a path that is close enough (in terms of cost) to the optimal path; this allows the algorithm
to terminate at that point and avoid further computation in attempting to find a better path.

If targc < 0, targc ¼ 0 is assumed.

5: path½nc� – Integer Output

On exit: the best path discovered by the simulation. That is, path contains the city indices in path
order. If fail:code 6¼ 0 on exit, path contains the indices 1 to nc.

6: cost – double * Output

On exit: the cost or weight of path. If fail:code 6¼ 0 on exit, cost contains the largest model real
number (see nag_real_max_exponent (X02BLC)).

7: tmode – Integer * Output

On exit: the termination mode of the function (if fail:code 6¼ 0 on exit, tmode is set to �1):

tmode ¼ 0
Optimal solution found, cost ¼ bound.

tmode ¼ 1
System temperature cooled. The algorithm returns a path and associated cost that does not
attain, nor lie within targc of, the bound. This could be a sufficiently good approximation
to the optimal path, particularly when boundþ targc lies below the optimal cost.

tmode ¼ 2
Halted by cost falling within the desired targc range of the bound.

tmode ¼ 3
System stalled following lack of improvement.

tmode ¼ 4
Initial search failed to find a single improvement (the solution could be optimal).

8: alg stats½6� – double Output

On exit: an array of metrics collected during the initial search. These could be used as a basis for
future optimization. If fail:code 6¼ 0 on exit, the elements of alg_stats are set to zero; the first
five elements are also set to zero in the trival cases nc ¼ 1, 2 or 3.

alg stats½0�
Mean delta.

alg stats½1�
Standard deviation of deltas.

alg stats½2�
Cost at end of initial search phase.

alg stats½3�
Best cost encountered during search phase.

alg stats½4�
Initial system temperature. At the end of stage 1 of the algorithm, this is a function of the
mean and variance of the deltas, and of the distance from best cost to the lower bound. It
is a measure of the initial acceptance criteria for stage 2. The larger this value, the more
iterations it will take to geometrically reduce it during stage 2 until the system is cooled
(below a threshold value).

h – Operations Research h03bbc

Mark 26 h03bbc.3

alg stats½5�
The lower bound used, which will be that computed internally when bound � 0 on input.
Subsequent calls with different random states can set bound to the value returned in
alg stats½5� to avoid recomputation of the minimal spanning tree.

9: state½dim� – Integer Communication Array

Note: the dimension, dim, of this array is dictated by the requirements of associated functions
that must have been previously called. This array MUST be the same array passed as argument
state in the previous call to nag_rand_init_repeatable (g05kfc) or nag_rand_init_nonrepeatable
(g05kgc).

On entry: a valid RNG state initialized by nag_rand_init_repeatable (g05kfc) or nag_rand_i
nit_nonrepeatable (g05kgc). Since the algorithm used is stochastic, a random number generator is
employed; if the generator is initialized to a non-repeatable sequence (nag_rand_init_nonrepea
table (g05kgc)) then different solution paths will be taken on successive runs, returning possibly
different final approximate solutions.

On exit: contains updated information on the state of the generator.

10: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, nc ¼ valueh i.
Constraint: nc � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_INVALID_STATE

On entry, state vector has been corrupted or not initialized.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_REAL_ARRAY

On entry, the strictly upper triangle of dm had a negative element.

h03bbc NAG Library Manual

h03bbc.4 Mark 26

7 Accuracy

The function will not perform well when the average change in cost caused by switching two cities is
small relative to the cost; this can happen when many of the values in the distance matrix are relatively
close to each other.

The quality of results from this function can vary quite markedly when different initial random states
are used. It is therefore advisable to compute a number of approximations using different initial random
states. The best cost and path can then be taken from the set of approximations obtained. If no change
in results is obtained after 10 such trials then it is unlikely that any further improvement can be made
by this function.

8 Parallelism and Performance

Running many instances of the function in parallel with independent random number generator states
can yield a set of possible solutions from which a best approximate solution may be chosen.

9 Further Comments

Memory is internally allocated for 3� nc� 2 integers and nc� 1 real values.

In the case of two cities that are not connected, a suitably large number should be used as the distance
(cost) between them so as to deter solution paths which directly connect the two cities.

If a city is to be visited more than once (or more than twice for the home city) then the distance matrix
should contain multiple entries for that city (on rows and columns i1; i2; . . .) with zero entries for
distances to itself and identical distances to other cities.

10 Example

An approximation to the best path through 21 cities in the United Kingdom and Ireland, beginning and
ending in Oxford, is sought. A lower bound is calculated internally.

10.1 Program Text

/* nag_mip_tsp_simann (h03bbc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <nag.h>
#include <stdio.h>
#include <string.h>
#include <nag_stdlib.h>
#include <nagg05.h>
#include <nagh03.h>

int main(void)
{

/* Scalars */
Integer exit_status = 0;
Integer subid = 53, lseed = 4, lstate;
Integer i, j, l, nc, n_i, icol, col_s, col_f, nrows, tmode;
double bound, targc, cost;
/* Arrays */
Integer seed[] = { 304950, 889934, 209094, 23423990 };
double alg_stats[6];
Integer *state = 0, *path = 0;
double *dm = 0;
char **cities = 0;
/* Nag Types */

h – Operations Research h03bbc

Mark 26 h03bbc.5

Nag_BaseRNG genid = Nag_WichmannHill_I;
NagError fail;

INIT_FAIL(fail);

printf("nag_mip_tsp_simann (h03bbc) Example Program Results\n\n");

/* Read number of cities from data file */
#ifdef _WIN32

scanf_s(" %*[^\n]"); /* Skip heading */
#else

scanf(" %*[^\n]"); /* Skip heading */
#endif
#ifdef _WIN32

scanf_s("%" NAG_IFMT " %*[^\n]", &nc);
#else

scanf("%" NAG_IFMT " %*[^\n]", &nc);
#endif

/* Get the length of the state array for random number generation */
lstate = -1;
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Allocate arrays using nc and lstate */
if (!(state = NAG_ALLOC(lstate, Integer)) ||

!(path = NAG_ALLOC(nc, Integer)) ||
!(dm = NAG_ALLOC(nc * nc, double)) || !(cities = NAG_ALLOC(nc, char *)))

{
printf("Allocation failure\n");
exit_status = 2;
goto END;

}

/* Read distance matrix 10 columns at a time */
/* Define DM for reading distance matrix from file */

#define DM(I, J) dm[(J-1)*nc + I - 1]
for (icol = 2; icol <= nc; icol = icol + 10) {

/* Skip a line */
#ifdef _WIN32

scanf_s(" %" NAG_IFMT " %*[^\n]", &n_i);
#else

scanf(" %" NAG_IFMT " %*[^\n]", &n_i);
#endif

col_f = MIN(icol + 9, nc);
nrows = col_f - 1;
for (i = 1; i <= nrows; i++) {

/* Skip row number */
#ifdef _WIN32

scanf_s("%" NAG_IFMT "", &n_i);
#else

scanf("%" NAG_IFMT "", &n_i);
#endif

col_s = MAX(i + 1, icol);
for (j = col_s; j <= col_f; j++) {

#ifdef _WIN32
scanf_s("%lf", &DM(i, j));

#else
scanf("%lf", &DM(i, j));

#endif
}

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif
}

h03bbc NAG Library Manual

h03bbc.6 Mark 26

}

/* Read city names */
for (i = 0; i < nc; i++) {

if (!(cities[i] = NAG_ALLOC(20, char)))
{

printf("Allocation failure\n");
exit_status = 3;
goto END;

}
#ifdef _WIN32

scanf_s("%" NAG_IFMT " %19s%*[^\n] ", &n_i, cities[i], 20);
#else

scanf("%" NAG_IFMT " %19s%*[^\n] ", &n_i, cities[i]);
#endif

}

/* Initialize the random number generator to a repeatable sequence */
nag_rand_init_repeatable(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_rand_init_repeatable (g05kfc).\n%s\n",
fail.message);

exit_status = 4;
goto END;

}

/* Calculate a lower bound internally and try to find lowest cost path. */
bound = -1.0;
targc = -1.0;

/* Find low cost return path through all cities. */
nag_mip_tsp_simann(nc, dm, bound, targc, path, &cost, &tmode, alg_stats,

state, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_mip_tsp_simann (h03bbc).\n%s\n", fail.message);
exit_status = 5;
goto END;

}

printf("Initial search end cost: %12.2f\n", alg_stats[2]);
printf("Search best cost : %12.2f\n", alg_stats[3]);
printf("Initial temperature : %12.2f\n", alg_stats[4]);
printf("Lower bound : %12.2f\n", alg_stats[5]);
printf("Termination mode : %12" NAG_IFMT "\n\n", tmode);
printf("Final cost : %12.2f\n\n", cost);
printf("Final path:\n");
printf(" %s --> %s\n", cities[path[0] - 1], cities[path[1] - 1]);
l = strlen(cities[path[0] - 1]);
for (i = 2; i <= nc - 1; i++) {

printf(" ");
for (j = 0; j < l; j++)

printf(" ");
printf(" --> %s\n", cities[path[i] - 1]);

}
printf(" ");
for (j = 0; j < l; j++)

printf(" ");
printf(" --> %s\n", cities[path[0] - 1]);

END:
NAG_FREE(dm);
NAG_FREE(state);
NAG_FREE(path);
for (i = 0; i < nc; i++) {

NAG_FREE(cities[i]);
}
NAG_FREE(cities);

return exit_status;
}

h – Operations Research h03bbc

Mark 26 h03bbc.7

10.2 Program Data

nag_mip_tsp_simann (h03bbc) Example Program Data

21 : number of cities

2 3 4 5 6 7 8 9 10 11
1 23961 7112 21331 9050 22548 20667 13227 11617 14292 9455
2 25998 4724 27936 2014 3997 20826 30488 21891 28327
3 23108 2871 24325 22444 15004 8664 16359 6503
4 25203 3444 3379 18093 27755 19158 25593
5 26434 24553 15169 10773 16033 8612
6 2668 19496 29159 20562 26997
7 17550 27212 18615 25051
8 19516 1895 17354
9 20649 3135

10 18537

12 13 14 15 16 17 18 19 20 21
1 19634 6394 29483 14068 28136 11052 7228 13771 4752 24111
2 5403 25281 9312 31882 4751 18651 24909 25448 20113 25289
3 21411 1263 31260 7889 29913 12829 12517 8941 7038 26178
4 3598 22547 10592 29149 8868 15918 21956 22715 17380 23484
5 23519 3372 33368 5988 32022 13917 14626 6916 9147 25852
6 4074 23951 7766 30553 6075 17322 23580 24119 18784 23960
7 2127 22005 9586 28606 8239 15375 21634 22172 16837 22013
8 16200 14308 26049 15136 24703 2447 14727 8446 9140 11714
9 25990 7981 35839 15655 34493 17409 17103 15937 11618 30467

10 17383 15491 7232 16033 25886 3630 15910 9343 10323 9866
11 23819 5810 33668 13484 32321 15237 14931 13766 9446 28296
12 21026 10985 27628 9638 14397 20655 21193 15858 20188
13 30598 8276 29252 12168 11856 9064 6377 25227
14 37538 9425 24307 30565 31103 25769 30945
15 35803 14744 19628 6869 14149 26227
16 22962 29220 29758 24423 29599
17 12712 8242 7126 13457
18 15366 6300 25639
19 9465 18936
20 20048 : dm

1 Oxford
2 Dundee
3 Cardiff
4 Edinburgh
5 Swansea
6 Perth
7 Stirling
8 Bangor
9 Plymouth

10 Holyhead
11 Exeter
12 Glasgow
13 Newport
14 Inverness
15 St.Davids
16 Aberdeen
17 St.Asaph
18 Cambridge
19 Aberystwyth
20 Birmingham
21 Dublin : names of cities

10.3 Program Results

nag_mip_tsp_simann (h03bbc) Example Program Results

Initial search end cost: 432459.00
Search best cost : 237068.00
Initial temperature : 598481.00
Lower bound : 106350.00

h03bbc NAG Library Manual

h03bbc.8 Mark 26

Termination mode : 3

Final cost : 131580.00

Final path:
Oxford --> Cambridge

--> Birmingham
--> Glasgow
--> Stirling
--> Edinburgh
--> Perth
--> Dundee
--> Aberdeen
--> Inverness
--> Holyhead
--> Dublin
--> Bangor
--> St.Asaph
--> Aberystwyth
--> St.Davids
--> Swansea
--> Cardiff
--> Newport
--> Exeter
--> Plymouth
--> Oxford

h – Operations Research h03bbc

Mark 26 h03bbc.9 (last)

	h03bbc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Applegate et al. (2006)
	Cook (2012)
	Johnson and McGeoch (1997)
	Press et al. (2007)
	Rego et al. (2011)
	Reinelt (1994)

	5 Arguments
	nc
	dm
	bound
	targc
	path
	cost
	tmode
	alg_stats
	state
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INTERNAL_ERROR
	NE_INVALID_STATE
	NE_NO_LICENCE
	NE_REAL_ARRAY

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

