
NAG Library Function Document

nag_moving_average (g01wac)

1 Purpose

nag_moving_average (g01wac) calculates the mean and, optionally, the standard deviation using a
rolling window for an arbitrary sized data stream.

2 Specification

#include <nag.h>
#include <nagg01.h>

void nag_moving_average (Integer m, Integer nb, const double x[],
Nag_Weightstype iwt, const double wt[], Integer *pn, double rmean[],
double rsd[], double rcomm[], NagError *fail)

3 Description

Given a sample of n observations, denoted by x ¼ xi : i ¼ 1; 2; . . . ; nf g and a set of weights,
w ¼ wj : j ¼ 1; 2; . . . ;m

� �
, nag_moving_average (g01wac) calculates the mean and, optionally, the

standard deviation, in a rolling window of length m.

For the ith window the mean is defined as

�i ¼

Xm
j¼1

wjxiþj�1

W
ð1Þ

and the standard deviation as

�i ¼

ffi
Xm
j¼1

wj xiþj�1 � �i

� �2

W �

Xm
j¼1

w2
j

W

vuuuuuuuuut
ð2Þ

with W ¼
Xm
j¼1

wj.

Four different types of weighting are possible:

(i) No weights (wj ¼ 1)

When no weights are required both the mean and standard deviations can be calculated in an
iterative manner, with

�iþ1 ¼ �i þ xiþm�xið Þ
m

�2
iþ1 ¼ m� 1ð Þ�2i þ xiþm � �ið Þ2 � xi � �ið Þ2 � xiþm�xið Þ2

m

where the initial values �1 and �1 are obtained using the one pass algorithm of West (1979).

(ii) Each observation has its own weight

In this case, rather than supplying a vector of m weights a vector of n weights is supplied instead,
v ¼ vj : j ¼ 1; 2; . . . ; n

� �
and wj ¼ viþj�1 in (1) and (2).

g01 – Simple Calculations on Statistical Data g01wac

Mark 26 g01wac.1

If the standard deviations are not required then the mean is calculated using the iterative formula:

Wiþ1 ¼ Wi þ viþm � við Þ
�iþ1 ¼ �i þW�1

i viþmxiþm � vixið Þ

where W1 ¼
Xm
i¼1

vi and �1 ¼ W�1
1

Xm
i¼1

vixi.

If both the mean and standard deviation are required then the one pass algorithm of West (1979) is
used in each window.

(iii) Each position in the window has its own weight

This is the case as described in (1) and (2), where the weight given to each observation differs
depending on which summary is being produced. When these types of weights are specified both
the mean and standard deviation are calculated by applying the one pass algorithm of West (1979)
multiple times.

(iv) Each position in the window has a weight equal to its position number (wj ¼ j)

This is a special case of (iii).

If the standard deviations are not required then the mean is calculated using the iterative formula:

Siþ1 ¼ Si þ xiþm � xið Þ
�iþ1 ¼ �i þ 2 mxiþm�Sið Þ

m mþ1ð Þ

where S1 ¼
Xm
i¼1

xi and �1 ¼ 2 m2 þm
� ��1

S1.

If both the mean and standard deviation are required then the one pass algorithm of West is applied
multiple times.

For large datasets, or where all the data is not available at the same time, x (and if each observation has
its own weight, v) can be split into arbitrary sized blocks and nag_moving_average (g01wac) called
multiple times.

4 References

Chan T F, Golub G H and Leveque R J (1982) Updating Formulae and a Pairwise Algorithm for
Computing Sample Variances Compstat, Physica-Verlag

West D H D (1979) Updating mean and variance estimates: An improved method Comm. ACM 22 532–
555

5 Arguments

1: m – Integer Input

On entry: m, the length of the rolling window.

If pn 6¼ 0, m must be unchanged since the last call to nag_moving_average (g01wac).

Constraint: m � 1.

2: nb – Integer Input

On entry: b, the number of observations in the current block of data. The size of the block of data
supplied in x (and when iwt ¼ Nag WeightObs, wt) can vary; therefore nb can change between
calls to nag_moving_average (g01wac).

Constraints:

nb � 0;
if rcomm is NULL, nb � m.

g01wac NAG Library Manual

g01wac.2 Mark 26

3: x½nb� – const double Input

On entry: the current block of observations, corresponding to xi, for i ¼ kþ 1; . . . ; kþ b, where
k is the number of observations processed so far and b is the size of the current block of data.

4: iwt – Nag_Weightstype Input

On entry: the type of weighting to use.

iwt ¼ Nag NoWeights
No weights are used.

iwt ¼ Nag WeightObs
Each observation has its own weight.

iwt ¼ Nag WeightWindow
Each position in the window has its own weight.

iwt ¼ Nag WeightWindowPos
Each position in the window has a weight equal to its position number.

If pn 6¼ 0, iwt must be unchanged since the last call to nag_moving_average (g01wac).

C o n s t r a i n t : iwt ¼ Nag NoWeights, Nag WeightObs, Nag WeightWindow o r
Nag WeightWindowPos.

5: wt½dim� – const double Input

Note: the dimension, dim, of the array wt must be at least

nb when iwt ¼ Nag WeightObs;
m when iwt ¼ Nag WeightWindow;
otherwise wt may be NULL.

On entry: the user-supplied weights.

If iwt ¼ Nag WeightObs, wt½i � 1� ¼ �iþk, for i ¼ 1; 2; . . . ; b.

If iwt ¼ Nag WeightWindow, wt½j � 1� ¼ wj , for j ¼ 1; 2; . . . ;m.

Otherwise, wt is not referenced and may be NULL.

Constraints:

if iwt ¼ Nag WeightObs, wt½i � 1� � 0, for i ¼ 1; 2; . . . ;nb;
if iwt ¼ Nag WeightWindow, wt½0� 6¼ 0 and

Pm
j¼1wt½j � 1� > 0;

if iwt ¼ Nag WeightWindow and rsd is not NULL, wt½j � 1� � 0, for j ¼ 1; 2; . . . ;m.

6: pn – Integer * Input/Output

On entry: k, the number of observations processed so far. On the first call to
nag_moving_average (g01wac), or when starting to summarise a new dataset, pn must be set
to 0.

If pn 6¼ 0, it must be the same value as returned by the last call to nag_moving_average
(g01wac).

On exit: kþ b, the updated number of observations processed so far.

Constraint: pn � 0.

7: rmean½dim� – double Output

Note: the dimension, dim, of the array rmean must be at least max 0; nbþmin 0; pn�mþ 1ð Þð Þ.
On exit: �l , the (weighted) moving averages, for l ¼ 1; 2; . . . ; bþmin 0; k�mþ 1ð Þ. Therefore,
�l is the mean of the data in the window that ends on x½lþm�min k;m� 1ð Þ � 2�.
If, on entry, pn � m� 1, i.e., at least one windows worth of data has been previously processed,
then rmean½l� 1� is the summary corresponding to the window that ends on x½l� 1�. On the

g01 – Simple Calculations on Statistical Data g01wac

Mark 26 g01wac.3

other hand, if, on entry, pn ¼ 0, i.e., no data has been previously processed, then rmean½l� 1� is
the summary corresponding to the window that ends on x½mþ l� 2� (or, equivalently, starts on
x½l� 1�).

8: rsd½dim� – double Output

Note: the dimension, dim, of the array rsd must be at least max 0; nbþmin 0;pn�mþ 1ð Þð Þ.
Note: if standard deviations are not required then rsd must be NULL.

On exit: if rsd is not NULL then �l, the (weighted) standard deviation. The ordering of rsd is
the same as the ordering of rmean.

9: rcomm½2mþ 20� – double Communication Array

On entry: communication array, used to store information between calls to nag_moving_average
(g01wac). If rcomm is NULL then pn must be set to zero and all the data must be supplied in
one go.

10: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_ILLEGAL_COMM

rcomm has been corrupted between calls.

NE_INT

On entry, m ¼ valueh i.
Constraint: m � 1.

On entry, nb ¼ valueh i.
Constraint: nb � 0.

On entry, nb ¼ valueh i, m ¼ valueh i.
Constraint: if rcomm is NULL, nb � m.

On entry, pn ¼ valueh i.
Constraint: pn � 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

g01wac NAG Library Manual

g01wac.4 Mark 26

NE_NEG_WEIGHT

On entry, wt½ valueh i� ¼ valueh i.
Constraint: wt½i� 1� � 0.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_PREV_CALL

if pn > 0, iwt must be unchanged since previous call.

On entry, m ¼ valueh i.
On entry at previous call, m ¼ valueh i.
Constraint: if pn > 0, m must be unchanged since previous call.

On entry, pn ¼ valueh i.
On exit from previous call, pn ¼ valueh i.
Constraint: if pn > 0, pn must be unchanged since previous call.

NE_SUM_WEIGHT

On entry, sum of weights supplied in wt is valueh i.
Constraint: if iwt ¼ Nag WeightWindow, the sum of the weights > 0.

NE_WEIGHT_ZERO

On entry, wt½0� ¼ valueh i.
Constraint: if iwt ¼ Nag WeightWindow, wt½0� > 0.

NW_POTENTIAL_PROBLEM

On entry, at least one window had all zero weights.

On entry, unable to calculate at least one standard deviation due to the weights supplied.

7 Accuracy

Not applicable.

8 Parallelism and Performance

nag_moving_average (g01wac) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

nag_moving_average (g01wac) makes calls to BLAS and/or LAPACK routines, which may be threaded
within the vendor library used by this implementation. Consult the documentation for the vendor library
for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The more data that is supplied to nag_moving_average (g01wac) in one call, i.e., the larger nb is, the
more efficient the function will be.

g01 – Simple Calculations on Statistical Data g01wac

Mark 26 g01wac.5

10 Example

This example calculates Spencer's 15-point moving average for the change in rate of the Earth's rotation
between 1821 and 1850. The data is supplied in three chunks, the first consisting of five observations,
the second 10 observations and the last 15 observations.

10.1 Program Text

/* nag_moving_average (g01wac) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

/* Pre-processor includes */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>

int main(void)
{

/* Integer scalar and array declarations */
Integer i, ierr, lrcomm, m, nb, offset, pn, nsummaries;
Integer exit_status = 0;

/* NAG structures and types */
NagError fail;
Nag_Weightstype iwt;
Nag_Boolean want_sd;

/* Double scalar and array declarations */
double *rcomm = 0, *rmean = 0, *rsd = 0, *x = 0, *wt = 0;

/* Character scalar and array declarations */
char ciwt[40], cwant_sd[40];

/* Initialize the error structure */
INIT_FAIL(fail);

printf("nag_moving_average (g01wac) Example Program Results\n\n");

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Read in the problem size */
#ifdef _WIN32

scanf_s("%39s%" NAG_IFMT "%*[^\n] ", ciwt, (unsigned)_countof(ciwt), &m);
#else

scanf("%39s%" NAG_IFMT "%*[^\n] ", ciwt, &m);
#endif

iwt = (Nag_Weightstype) nag_enum_name_to_value(ciwt);

/* Read in a flag indicating whether we want the standard deviations */
#ifdef _WIN32

scanf_s("%39s%*[^\n] ", cwant_sd, (unsigned)_countof(cwant_sd));
#else

scanf("%39s%*[^\n] ", cwant_sd);
#endif

want_sd = (Nag_Boolean) nag_enum_name_to_value(cwant_sd);

/* Initial handling of weights */
if (iwt == Nag_WeightWindow) {

g01wac NAG Library Manual

g01wac.6 Mark 26

/* Each observation in the rolling window has its own weight */
if (!(wt = NAG_ALLOC(m, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
for (i = 0; i < m; i++) {

#ifdef _WIN32
scanf_s("%lf", &wt[i]);

#else
scanf("%lf", &wt[i]);

#endif
}

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif
}

/* Allocate memory for the communication array */
lrcomm = 2 * m + 20;
if (!(rcomm = NAG_ALLOC(lrcomm, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Print some titles */
if (want_sd) {

printf(" Standard\n");
printf(" Interval Mean Deviation\n");
printf(" ---------------------------------------\n");

}
else {

printf(" Interval Mean \n");
printf(" ------------------------\n");

}

/* Loop over each block of data */
for (pn = 0;;) {

/* Read in the number of observations in this block */
#ifdef _WIN32

ierr = scanf_s("%" NAG_IFMT, &nb);
#else

ierr = scanf("%" NAG_IFMT, &nb);
#endif

if (ierr == EOF || ierr < 1)
break;

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif

/* Reallocate X to the required size */
NAG_FREE(x);
if (!(x = NAG_ALLOC(nb, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read in the data for this block */
for (i = 0; i < nb; i++) {

#ifdef _WIN32
scanf_s("%lf", &x[i]);

#else

g01 – Simple Calculations on Statistical Data g01wac

Mark 26 g01wac.7

scanf("%lf", &x[i]);
#endif

}
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

if (iwt == Nag_WeightObs) {
/* User supplied weights are present */

/* Reallocate WT to the required size */
NAG_FREE(wt);
if (!(wt = NAG_ALLOC(nb, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read in the weights for this block */
for (i = 0; i < nb; i++) {

#ifdef _WIN32
scanf_s("%lf", &wt[i]);

#else
scanf("%lf", &wt[i]);

#endif
}

#ifdef _WIN32
scanf_s("%*[^\n] ");

#else
scanf("%*[^\n] ");

#endif
}

/* Calculate the number of summaries we can produce */
nsummaries = MAX(0, nb + MIN(0, pn - m + 1));

/* Reallocate the output arrays */
NAG_FREE(rmean);
if (!(rmean = NAG_ALLOC(nsummaries, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
if (want_sd) {

NAG_FREE(rsd);
if (!(rsd = NAG_ALLOC(nsummaries, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

/* nag_moving_average (g01wac):
Calculate the moving average (and optionally the standard deviation)
for this block of data

*/
nag_moving_average(m, nb, x, iwt, wt, &pn, rmean, rsd, rcomm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_moving_average (g01wac).\n%s\n", fail.message);
exit_status = -1;
if (fail.code != NW_POTENTIAL_PROBLEM)

goto END;
}

/* Number of results printed so far */
offset = MAX(1, pn - nb - m + 2);

g01wac NAG Library Manual

g01wac.8 Mark 26

/* Display the results for this block of data */
if (want_sd) {

for (i = 0; i < nsummaries; i++) {
printf(" [%3" NAG_IFMT ",%3" NAG_IFMT "] "

"%10.1f %10.1f\n",
i + offset, i + m + offset - 1, rmean[i], rsd[i]);

}
}
else {

for (i = 0; i < nsummaries; i++) {
printf(" [%3" NAG_IFMT ",%3" NAG_IFMT "] %10.1f\n",

i + offset, i + m + offset - 1, rmean[i]);
}

}
}

printf("\n");
printf(" Total number of observations : %3" NAG_IFMT "\n", pn);
printf(" Length of window : %3" NAG_IFMT "\n", m);

END:
NAG_FREE(x);
NAG_FREE(wt);
NAG_FREE(rmean);
NAG_FREE(rsd);
NAG_FREE(rcomm);

return (exit_status);
}

10.2 Program Data

nag_moving_average (g01wac) Example Program Data
Nag_WeightWindow 15 :: iwt,m
Nag_FALSE :: If Nag_TRUE sd’s are calculated
-3.0 -6.0 -5.0 3.0 21.0 46.0 67.0
74.0 67.0 46.0 21.0 3.0 -5.0 -6.0 -3.0 :: wt
5 :: nb
-2170.0 -1770.0 -1660.0 -1360.0 -1100.0 :: End of x for first block

10 :: nb
-950.0 -640.0 -370.0 -140.0 -250.0
-510.0 -620.0 -730.0 -880.0 -1130.0 :: End of x for second block

15 :: nb
-1200.0 -830.0 -330.0 -190.0 210.0

170.0 440.0 440.0 780.0 880.0
1220.0 1260.0 1140.0 850.0 640.0 :: End of x for third block

10.3 Program Results

nag_moving_average (g01wac) Example Program Results

Interval Mean

[1, 15] -427.6
[2, 16] -332.5
[3, 17] -337.1
[4, 18] -438.2
[5, 19] -604.4
[6, 20] -789.4
[7, 21] -935.4
[8, 22] -990.6
[9, 23] -927.1
[10, 24] -752.1
[11, 25] -501.3
[12, 26] -227.2
[13, 27] 23.2
[14, 28] 236.2

g01 – Simple Calculations on Statistical Data g01wac

Mark 26 g01wac.9

[15, 29] 422.4
[16, 30] 604.2

Total number of observations : 30
Length of window : 15

This example plot shows the smoothing effect of using different length rolling windows on the mean
and standard deviation. Two different window lengths, m ¼ 5 and 10, are used to produce the
unweighted rolling mean and standard deviations for the change in rate of the Earth's rotation between
1821 and 1850. The values of the rolling mean and standard deviations are plotted at the centre points
of their respective windows.

 100

 200

 300

 400

 500

 600

 700

 1820 1825 1830 1835 1840 1845 1850

St
an

da
rd

 D
ev

ia
ti

on

Year

-2500

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

C
ha

ng
e

in
 D

ay
 L

en
gt

h

Example Program
Raw data, mean and standard deviation from a rolling window of

changes in rate of Earth’s rotation (μs), 1821 to 1850

window length (m) = 10
window length (m) = 5

g01wac NAG Library Manual

g01wac.10 (last) Mark 26

	g01wac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Chan et al. (1982)
	West (1979)

	5 Arguments
	m
	nb
	x
	iwt
	wt
	pn
	rmean
	rsd
	rcomm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_ILLEGAL_COMM
	NE_INT
	NE_INTERNAL_ERROR
	NE_NEG_WEIGHT
	NE_NO_LICENCE
	NE_PREV_CALL
	NE_SUM_WEIGHT
	NE_WEIGHT_ZERO
	NW_POTENTIAL_PROBLEM

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

