
NAG Library Function Document

nag_approx_quantiles_arbitrary (g01apc)

1 Purpose

nag_approx_quantiles_arbitrary (g01apc) finds approximate quantiles from a large arbitrary-sized data
stream using an out-of-core algorithm.

2 Specification

#include <nag.h>
#include <nagg01.h>

void nag_approx_quantiles_arbitrary (Integer *ind, const double rv[],
Integer nb, double eps, Integer *np, const double q[], double qv[],
Integer nq, double rcomm[], Integer lrcomm, Integer icomm[],
Integer licomm, NagError *fail)

3 Description

A quantile is a value which divides a frequency distribution such that there is a given proportion of data
values below the quantile. For example, the median of a dataset is the 0:5 quantile because half the
values are less than or equal to it.

nag_approx_quantiles_arbitrary (g01apc) uses a slightly modified version of an algorithm described in a
paper by Zhang and Wang (2007) to determine �-approximate quantiles of a large arbitrary-sized data
stream of real values, where � is a user-defined approximation factor. Let m denote the number of data
elements processed so far then, given any quantile q 2 0:0; 1:0½ �, an �-approximate quantile is defined as
an element in the data stream whose rank falls within q � �ð Þm; q þ �ð Þm½ �. In case of more than one
�-approximate quantile being available, the one closest to qm is used.

4 References

Zhang Q and Wang W (2007) A fast algorithm for approximate quantiles in high speed data streams
Proceedings of the 19th International Conference on Scientific and Statistical Database Management
IEEE Computer Society 29

5 Arguments

1: ind – Integer * Input/Output

On initial entry: must be set to 0.

On entry: indicates the action required in the current call to nag_approx_quantiles_arbitrary
(g01apc).

ind ¼ 0
Initialize the communication arrays and attempt to process the first nb values from the data
stream. eps, rv and nb must be set and licomm must be at least 10.

ind ¼ 1
Attempt to process the next block of nb values from the data stream. The calling program
must update rv and (if required) nb, and re-enter nag_approx_quantiles_arbitrary (g01apc)
with all other parameters unchanged.

ind ¼ 2
Continue calculation following the reallocation of either or both of the communication
arrays rcomm and icomm.

g01 – Simple Calculations on Statistical Data g01apc

Mark 26 g01apc.1

ind ¼ 3
Calculate the nq �-approximate quantiles specified in q. The calling program must set q
and nq and re-enter nag_approx_quantiles_arbitrary (g01apc) with all other parameters
unchanged. This option can be chosen only when np � exp 1:0ð Þ=epsd e.

On exit: indicates output from the call.

ind ¼ 1
nag_approx_quantiles_arbitrary (g01apc) has processed np data points and expects to be
called again with additional data.

ind ¼ 2
Either one or more of the communication arrays rcomm and icomm is too small. The new
minimum lengths of rcomm and icomm have been returned in icomm½0� and icomm½1�
respectively. If the new minimum length is greater than the current length then the
corresponding communication array needs to be reallocated, its contents preserved and
nag_approx_quantiles_arbitrary (g01apc) called again with all other parameters unchanged.

If there is more data to be processed, it is recommended that lrcomm and licomm are made
significantly bigger than the minimum to limit the number of reallocations.

ind ¼ 3
nag_approx_quantiles_arbitrary (g01apc) has returned the requested �-approximate
quantiles in qv. These quantiles are based on np data points.

Constraint: ind ¼ 0, 1, 2 or 3.

2: rv½dim� – const double Input

Note: the dimension, dim, of the array rv must be at least nb when ind ¼ 0, 1 or 2.

On entry: if ind ¼ 0, 1 or 2, the vector containing the current block of data, otherwise rv is not
referenced.

3: nb – Integer Input

On entry: if ind ¼ 0, 1 or 2, the size of the current block of data. The size of blocks of data in
array rv can vary; therefore nb can change between calls to nag_approx_quantiles_arbitrary
(g01apc).

Constraint: if ind ¼ 0, 1 or 2, nb > 0.

4: eps – double Input

On entry: approximation factor �.

Constraint: eps > 0:0 and eps � 1:0.

5: np – Integer * Output

On exit: m, the number of elements processed so far.

6: q½dim� – const double Input

Note: the dimension, dim, of the array q must be at least nq when ind ¼ 3.

On entry: if ind ¼ 3, the quantiles to be calculated, otherwise q is not referenced. Note that
q½i� ¼ 0:0, corresponds to the minimum value and q½i� ¼ 1:0 to the maximum value.

Constraint: if ind ¼ 3, 0:0 � q½i � 1� � 1:0, for i ¼ 1; 2; . . . ; nq.

7: qv½dim� – double Output

Note: the dimension, dim, of the array qv must be at least nq when ind ¼ 3.

On exit: if ind ¼ 3, qv½i� contains the �-approximate quantiles specified by the value provided in
q½i�.

g01apc NAG Library Manual

g01apc.2 Mark 26

8: nq – Integer Input

On entry: if ind ¼ 3, the number of quantiles requested, otherwise nq is not referenced.

Constraint: if ind ¼ 3, nq > 0.

9: rcomm½lrcomm� – double Communication Array

On entry: if ind ¼ 1 or 2 then the first l elements of rcomm as supplied to
nag_approx_quantiles_arbitrary (g01apc) must be identical to the first l elements of rcomm
returned from the last call to nag_approx_quantiles_arbitrary (g01apc), where l is the value of
lrcomm used in the last call. In other words, the contents of rcomm must not be altered between
calls to this function. If rcomm needs to be reallocated then its contents must be preserved. If
ind ¼ 0 then rcomm need not be set.

On exit: rcomm holds information required by subsequent calls to nag_approx_quantiles_arbi
trary (g01apc)

10: lrcomm – Integer Input

On entry: the dimension of the array rcomm.

Constraints:

if ind ¼ 0, lrcomm � 1;
otherwise lrcomm � icomm½0�.

11: icomm½licomm� – Integer Communication Array

On entry: if ind ¼ 1 or 2 then the first l elements of icomm as supplied to
nag_approx_quantiles_arbitrary (g01apc) must be identical to the first l elements of icomm
returned from the last call to nag_approx_quantiles_arbitrary (g01apc), where l is the value of
licomm used in the last call. In other words, the contents of icomm must not be altered between
calls to this function. If icomm needs to be reallocated then its contents must be preserved. If
ind ¼ 0 then icomm need not be set.

On exit: icomm½0� holds the minimum required length for rcomm and icomm½1� holds the
minimum required length for icomm. The remaining elements of icomm are used for
communication between subsequent calls to nag_approx_quantiles_arbitrary (g01apc).

12: licomm – Integer Input

On entry: the dimension of the array icomm.

Constraints:

if ind ¼ 0, licomm � 10;
otherwise licomm � icomm½1�.

13: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

g01 – Simple Calculations on Statistical Data g01apc

Mark 26 g01apc.3

NE_ARRAY_SIZE

On entry, licomm ¼ valueh i.
Constraint: licomm � 10.

On entry, lrcomm ¼ valueh i.
Constraint: lrcomm � 1.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_ILLEGAL_COMM

The contents of icomm have been altered between calls to this function.

The contents of rcomm have been altered between calls to this function.

NE_INT

On entry, ind ¼ 0, 1 or 2 and nb ¼ valueh i.
Constraint: if ind ¼ 0, 1 or 2 then nb > 0.

On entry, ind ¼ 3 and nq ¼ valueh i.
Constraint: if ind ¼ 3 then nq > 0.

On entry, ind ¼ valueh i.
Constraint: ind ¼ 0, 1, 2 or 3.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_Q_OUT_OF_RANGE

On entry, ind ¼ 3 and q½ valueh i� ¼ valueh i.
Constraint: if ind ¼ 3 then 0:0 � q½i� � 1:0 for all i.

NE_REAL

On entry, eps ¼ valueh i.
Constraint: 0:0 < eps � 1:0.

NE_TOO_SMALL

Number of data elements streamed, valueh i is not sufficient for a quantile query when
eps ¼ valueh i.
Supply more data or reprocess the data with a higher eps value.

7 Accuracy

Not applicable.

g01apc NAG Library Manual

g01apc.4 Mark 26

8 Parallelism and Performance

nag_approx_quantiles_arbitrary (g01apc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The average time taken by nag_approx_quantiles_arbitrary (g01apc) scales as nplog 1=�log �npð Þð Þ.
It is not possible to determine in advance the final size of the communication arrays rcomm and icomm
without knowing the size of the dataset. However, if a rough size (n) is known, the speed of the
computation can be increased if the sizes of the communication arrays are not smaller than

lrcomm ¼ log2 n� epsþ 1:0ð Þ � 2ð Þ � 1:0=epsd e þ 1þ xþ 2�min x; x=2:0d e þ 1ð Þ � yþ 1
licomm ¼ log2 n� epsþ 1:0ð Þ � 2ð Þ � 2� 1:0=epsd e þ 1ð Þ þ 1ð Þþ

2� xþ 2�min x; x=2:0d e þ 1ð Þ � yð Þ þ yþ 11

where

x ¼ max 1; log eps� nð Þ=epsb cð Þ
y ¼ log2 n=xþ 1:0ð Þ þ 1:

10 Example

This example computes a list of �-approximate quantiles. The data is processed in blocks of 20
observations at a time to simulate a situation in which the data is made available in a piecemeal fashion.

10.1 Program Text

/* nag_approx_quantiles_arbitrary (g01apc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg01.h>

int main(void)
{

/* Scalars */
Integer exit_status = 0;
Integer i, ind, licomm, lrcomm, nb, np, nq, ierr;
double eps;
Nag_Boolean repeat;
/* Arrays */
double *q = 0, *qv = 0, *rcomm = 0, *trcomm = 0, *rv = 0;
Integer *icomm = 0, *ticomm = 0;
/* Nag Types */
NagError fail;

INIT_FAIL(fail);

printf("nag_approx_quantiles_arbitrary (g01apc) Example Program Results\n");

/* Skip heading in data file */
#ifdef _WIN32

g01 – Simple Calculations on Statistical Data g01apc

Mark 26 g01apc.5

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* Read in the problem size */
#ifdef _WIN32

scanf_s("%lf%*[^\n] ", &eps);
#else

scanf("%lf%*[^\n] ", &eps);
#endif
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%*[^\n] ", &nq);
#else

scanf("%" NAG_IFMT "%*[^\n] ", &nq);
#endif

if (!(qv = NAG_ALLOC(nq, double)) || !(q = NAG_ALLOC(nq, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read in the quantiles that are required */
for (i = 0; i < nq; ++i)

#ifdef _WIN32
scanf_s("%lf", &q[i]);

#else
scanf("%lf", &q[i]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n]");
#else

scanf("%*[^\n]");
#endif

/* Going to be reading in the data in blocks of size 20 */
nb = 20;

/* Make an initial allocation to the communication arrays */
lrcomm = 100;
licomm = 400;
if (!(rcomm = NAG_ALLOC(lrcomm, double)) ||

!(icomm = NAG_ALLOC(licomm, Integer)) || !(rv = NAG_ALLOC(nb, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Start looping across the data */
ind = 0;
repeat = Nag_TRUE;

while (repeat) {
/* Read in the blocks of data, each of size nb */
for (i = 0; i < nb; ++i) {

#ifdef _WIN32
ierr = scanf_s("%lf", &rv[i]);

#else
ierr = scanf("%lf", &rv[i]);

#endif
if (ierr == EOF || ierr == 0) {

/* We’ve read in the last block of data */
repeat = Nag_FALSE;

/* Set nb to the size of the last block of data */
nb = i;
break;

}

g01apc NAG Library Manual

g01apc.6 Mark 26

}

/* No data read in, so stop */
if (nb == 0)

break;

do {
/* Update the summaries based on the current block of data */
nag_approx_quantiles_arbitrary(&ind, rv, nb, eps, &np, q, qv,

nq, rcomm, lrcomm, icomm, licomm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_approx_quantiles_arbitrary (g01apc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

if (ind == 2) {
/* At least one of the communication arrays are too small */

if (lrcomm < icomm[0]) {
/* Need to make rcomm larger */

/* Allocate memory a real communication array of the new
size (held in icomm[0]) */

if (!(trcomm = NAG_ALLOC(icomm[0], double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Copy the old information into the new array */
for (i = 0; i < lrcomm; ++i)

trcomm[i] = rcomm[i];

/* Set lrcomm to the new size */
lrcomm = icomm[0];

/* Free up the old communication array */
NAG_FREE(rcomm);

/* Set rcomm to the new array */
rcomm = trcomm;

}

if (licomm < icomm[1]) {
/* Need to make icomm larger */

/* Allocate memory to an integer communication array of the new
size (held in icomm[1]) */

if (!(ticomm = NAG_ALLOC(icomm[1], Integer)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Copy the old information into the new array */
for (i = 0; i < licomm; ++i)

ticomm[i] = icomm[i];

/* Set lrcomm to the new size */
licomm = icomm[1];

/* Free up the old communication array */
NAG_FREE(icomm);

/* Set icomm to the new array */
icomm = ticomm;

}

g01 – Simple Calculations on Statistical Data g01apc

Mark 26 g01apc.7

}

/* If ind == 2 then we want to call the routine again, with the same
block of data */

} while (ind == 2);
}

/* Call the routine again to calculate quantiles specified in vector q */
ind = 3;
nag_approx_quantiles_arbitrary(&ind, rv, nb, eps, &np, q, qv,

nq, rcomm, lrcomm, icomm, licomm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_approx_quantiles_arbitrary (g01apc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Print the results */
printf("\n Input data:\n");
printf(" %" NAG_IFMT " observations\n", np);
printf(" eps = %5.2f\n", eps);
printf(" Quantile Result\n\n");
for (i = 0; i < nq; ++i) {

printf(" %7.2f %7.2f\n", q[i], qv[i]);
}

END:
NAG_FREE(rv);
NAG_FREE(q);
NAG_FREE(qv);
NAG_FREE(rcomm);
NAG_FREE(icomm);

return exit_status;
}

10.2 Program Data

nag_approx_quantiles_arbitrary (g01apc) Example Program Data
0.2 :: eps
3 :: nq
0.25 0.5 1.0 :: q
34.01 57.95 44.88 22.04 28.84
4.43 0.32 20.82 20.53 13.08
7.99 54.03 23.21 26.73 39.72
0.97 39.05 38.78 19.38 51.34

24.08 12.41 58.11 35.90 40.38
27.41 19.80 6.02 45.33 36.34
43.14 53.84 39.49 9.04 36.74
58.72 59.95 15.41 33.05 39.54
33.24 58.67 54.12 39.48 43.73
24.15 55.72 8.87 40.47 46.18
20.36 6.95 36.86 49.24 56.83
43.87 29.86 22.49 25.29 33.17

10.3 Program Results

nag_approx_quantiles_arbitrary (g01apc) Example Program Results

Input data:
60 observations
eps = 0.20
Quantile Result

0.25 22.49
0.50 39.54
1.00 59.95

g01apc NAG Library Manual

g01apc.8 (last) Mark 26

	g01apc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Zhang and Wang (2007)

	5 Arguments
	ind
	rv
	nb
	eps
	np
	q
	qv
	nq
	rcomm
	lrcomm
	icomm
	licomm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_ARRAY_SIZE
	NE_BAD_PARAM
	NE_ILLEGAL_COMM
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_Q_OUT_OF_RANGE
	NE_REAL
	NE_TOO_SMALL

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

