NAG Library Function Document nag dbdsqr (f08mec) # 1 Purpose nag_dbdsqr (f08mec) computes the singular value decomposition of a real upper or lower bidiagonal matrix, or of a real general matrix which has been reduced to bidiagonal form. # 2 Specification # 3 Description nag_dbdsqr (f08mec) computes the singular values and, optionally, the left or right singular vectors of a real upper or lower bidiagonal matrix B. In other words, it can compute the singular value decomposition (SVD) of B as $$B = U \Sigma V^{\mathrm{T}}$$. Here Σ is a diagonal matrix with real diagonal elements σ_i (the singular values of B), such that $$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0;$$ U is an orthogonal matrix whose columns are the left singular vectors u_i ; V is an orthogonal matrix whose rows are the right singular vectors v_i . Thus $$Bu_i = \sigma_i v_i$$ and $B^{\mathsf{T}} v_i = \sigma_i u_i$, $i = 1, 2, \dots, n$. To compute U and/or $V^{\rm T}$, the arrays ${\bf u}$ and/or ${\bf vt}$ must be initialized to the unit matrix before nag_dbdsqr (f08mec) is called. The function may also be used to compute the SVD of a real general matrix A which has been reduced to bidiagonal form by an orthogonal transformation: $A = QBP^T$. If A is m by n with $m \ge n$, then Q is m by n and P^T is n by n; if A is n by p with n < p, then Q is n by n and p^T is n by p. In this case, the matrices Q and/or P^T must be formed explicitly by nag_dorgbr (f08kfc) and passed to nag_dbdsqr (f08mec) in the arrays \mathbf{u} and/or \mathbf{vt} respectively. nag_dbdsqr (f08mec) also has the capability of forming $U^{T}C$, where C is an arbitrary real matrix; this is needed when using the SVD to solve linear least squares problems. nag_dbdsqr (f08mec) uses two different algorithms. If any singular vectors are required (i.e., if $\mathbf{ncvt} > 0$ or $\mathbf{nru} > 0$ or $\mathbf{ncc} > 0$), the bidiagonal QR algorithm is used, switching between zero-shift and implicitly shifted forms to preserve the accuracy of small singular values, and switching between QR and QL variants in order to handle graded matrices effectively (see Demmel and Kahan (1990)). If only singular values are required (i.e., if $\mathbf{ncvt} = \mathbf{nru} = \mathbf{ncc} = 0$), they are computed by the differential qd algorithm (see Fernando and Parlett (1994)), which is faster and can achieve even greater accuracy. The singular vectors are normalized so that $||u_i|| = ||v_i|| = 1$, but are determined only to within a factor ± 1 . #### 4 References Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist. Comput. 11 873–912 Fernando K V and Parlett B N (1994) Accurate singular values and differential qd algorithms *Numer*. *Math.* **67** 191–229 Golub G H and Van Loan C F (1996) *Matrix Computations* (3rd Edition) Johns Hopkins University Press, Baltimore # 5 Arguments # 1: **order** – Nag OrderType Input On entry: the **order** argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = Nag_RowMajor. See Section 2.3.1.3 in How to Use the NAG Library and its Documentation for a more detailed explanation of the use of this argument. Constraint: order = Nag_RowMajor or Nag_ColMajor. # 2: **uplo** – Nag_UploType Input On entry: indicates whether B is an upper or lower bidiagonal matrix. uplo = Nag_Upper B is an upper bidiagonal matrix. uplo = Nag_Lower B is a lower bidiagonal matrix. Constraint: uplo = Nag_Upper or Nag_Lower. #### n - Integer Input On entry: n, the order of the matrix B. Constraint: $\mathbf{n} \geq 0$. ## 4: **ncvt** – Integer Input On entry: ncvt, the number of columns of the matrix V^T of right singular vectors. Set $\mathbf{ncvt} = 0$ if no right singular vectors are required. Constraint: $\mathbf{ncvt} \geq 0$. #### 5: **nru** – Integer Input On entry: nru, the number of rows of the matrix U of left singular vectors. Set $\mathbf{nru} = 0$ if no left singular vectors are required. Constraint: $\mathbf{nru} \geq 0$. # 6: **ncc** – Integer Input On entry: ncc, the number of columns of the matrix C. Set ncc = 0 if no matrix C is supplied. Constraint: $ncc \ge 0$. ## 7: $\mathbf{d}[dim]$ – double Input/Output **Note**: the dimension, dim, of the array **d** must be at least $max(1, \mathbf{n})$. On entry: the diagonal elements of the bidiagonal matrix B. f08mec.2 Mark 26 On exit: the singular values in decreasing order of magnitude, unless fail.code = NE_CONVERGENCE (in which case see Section 6). 8: $\mathbf{e}[dim]$ – double Input/Output **Note**: the dimension, dim, of the array **e** must be at least max $(1, \mathbf{n} - 1)$. On entry: the off-diagonal elements of the bidiagonal matrix B. On exit: e is overwritten, but if fail.code = NE CONVERGENCE see Section 6. 9: $\mathbf{vt}[dim]$ – double Input/Output **Note**: the dimension, dim, of the array **vt** must be at least $max(1, \mathbf{pdvt} \times \mathbf{ncvt})$ when $\mathbf{order} = Nag_ColMajor$ and at least $max(1, \mathbf{pdvt} \times \mathbf{n})$ when $\mathbf{order} = Nag_RowMajor$. The (i, j)th element of the matrix is stored in ``` \mathbf{vt}[(j-1) \times \mathbf{pdvt} + i - 1] when \mathbf{order} = \text{Nag_ColMajor}; \mathbf{vt}[(i-1) \times \mathbf{pdvt} + j - 1] when \mathbf{order} = \text{Nag_RowMajor}. ``` On entry: if $\mathbf{ncvt} > 0$, \mathbf{vt} must contain an n by ncvt matrix. If the right singular vectors of B are required, ncvt = n and \mathbf{vt} must contain the unit matrix; if the right singular vectors of A are required, \mathbf{vt} must contain the orthogonal matrix P^{T} returned by $\mathsf{nag_dorgbr}$ (f08kfc) with $\mathsf{vect} = \mathsf{Nag_FormP}$. On exit: the n by next matrix V^{T} or $V^{T}P^{T}$ of right singular vectors, stored by rows. If $\mathbf{ncvt} = 0$, \mathbf{vt} is not referenced. 10: **pdvt** – Integer Input On entry: the stride separating row or column elements (depending on the value of **order**) in the array **vt**. Constraints: ``` if order = Nag_ColMajor, if ncvt > 0, pdvt \ge max(1, n); otherwise pdvt \ge 1.; if order = Nag_RowMajor, if ncvt > 0, pdvt \ge ncvt; otherwise pdvt > 1.. ``` 11: $\mathbf{u}[dim]$ – double Input/Output Note: the dimension, dim, of the array u must be at least ``` \max(1, \mathbf{pdu} \times \mathbf{n}) when \mathbf{order} = \text{Nag_ColMajor}; \max(1, \mathbf{nru} \times \mathbf{pdu}) when \mathbf{order} = \text{Nag_RowMajor}. ``` The (i, j)th element of the matrix U is stored in ``` \mathbf{u}[(j-1) \times \mathbf{pdu} + i - 1] when \mathbf{order} = \text{Nag_ColMajor}; \mathbf{u}[(i-1) \times \mathbf{pdu} + j - 1] when \mathbf{order} = \text{Nag_RowMajor}. ``` On entry: if $\mathbf{nru} > 0$, \mathbf{u} must contain an nru by n matrix. If the left singular vectors of B are required, nru = n and \mathbf{u} must contain the unit matrix; if the left singular vectors of A are required, \mathbf{u} must contain the orthogonal matrix Q returned by nag_dorgbr (f08kfc) with $\mathbf{vect} = Nag_FormQ$. On exit: the nru by n matrix U or QU of left singular vectors, stored as columns of the matrix. If $\mathbf{nru} = 0$, \mathbf{u} is not referenced. #### 12: **pdu** – Integer Input On entry: the stride separating row or column elements (depending on the value of **order**) in the array \mathbf{u} . Constraints: ``` if order = Nag_ColMajor, pdu \ge max(1, nru); if order = Nag_RowMajor, pdu \ge max(1, n). ``` # 13: $\mathbf{c}[dim]$ – double Input/Output **Note**: the dimension, dim, of the array **c** must be at least $max(1, pdc \times ncc)$ when **order** = Nag_ColMajor and at least $max(1, pdc \times n)$ when **order** = Nag_RowMajor. The (i, j)th element of the matrix C is stored in ``` \mathbf{c}[(j-1) \times \mathbf{pdc} + i - 1] when \mathbf{order} = \text{Nag_ColMajor}; \mathbf{c}[(i-1) \times \mathbf{pdc} + j - 1] when \mathbf{order} = \text{Nag_RowMajor}. ``` On entry: the n by ncc matrix C if ncc > 0. On exit: \mathbf{c} is overwritten by the matrix $U^{T}C$. If $\mathbf{ncc} = 0$, \mathbf{c} is not referenced. # 14: **pdc** – Integer Input On entry: the stride separating row or column elements (depending on the value of **order**) in the array \mathbf{c} . Constraints: ``` if order = Nag_ColMajor, if ncc > 0, pdc \ge max(1, n); otherwise pdc \ge 1.; if order = Nag_RowMajor, pdc \ge max(1, ncc). ``` # 15: **fail** – NagError * Input/Output The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation). # 6 Error Indicators and Warnings # NE ALLOC FAIL Dynamic memory allocation failed. See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information. ## **NE BAD PARAM** On entry, argument $\langle value \rangle$ had an illegal value. ## **NE CONVERGENCE** $\langle value \rangle$ off-diagonals did not converge. The arrays **d** and **e** contain the diagonal and off-diagonal elements, respectively, of a bidiagonal matrix orthogonally equivalent to B. ## NE INT ``` On entry, \mathbf{n} = \langle value \rangle. Constraint: \mathbf{n} \geq 0. On entry, \mathbf{ncc} = \langle value \rangle. Constraint: \mathbf{ncc} \geq 0. ``` f08mec.4 Mark 26 ``` On entry, \mathbf{ncvt} = \langle value \rangle. Constraint: \mathbf{ncvt} > 0. On entry, \mathbf{ncvt} = \langle value \rangle. Constraint: \mathbf{ncvt} \geq 0. On entry, \mathbf{nru} = \langle value \rangle. Constraint: \mathbf{nru} \geq 0. On entry, \mathbf{pdc} = \langle value \rangle. Constraint: \mathbf{pdc} > 0. On entry, \mathbf{pdu} = \langle value \rangle. Constraint: \mathbf{pdu} > 0. On entry, \mathbf{pdvt} = \langle value \rangle. Constraint: \mathbf{pdvt} > 0. ``` ## NE INT 2 ``` On entry, \mathbf{pdc} = \langle value \rangle and \mathbf{ncc} = \langle value \rangle. Constraint: \mathbf{pdc} \geq \max(1, \mathbf{ncc}). On entry, \mathbf{pdu} = \langle value \rangle and \mathbf{n} = \langle value \rangle. Constraint: \mathbf{pdu} \geq \max(1, \mathbf{n}). On entry, \mathbf{pdu} = \langle value \rangle and \mathbf{nru} = \langle value \rangle. Constraint: \mathbf{pdu} \geq \max(1, \mathbf{nru}). On entry, \mathbf{pdvt} = \langle value \rangle and \mathbf{ncvt} = \langle value \rangle. Constraint: if \mathbf{ncvt} > 0, \mathbf{pdvt} \geq \mathbf{ncvt}; otherwise \mathbf{pdvt} > 1. ``` ## NE INT 3 ``` On entry, \mathbf{ncc} = \langle value \rangle, \mathbf{pdc} = \langle value \rangle and \mathbf{n} = \langle value \rangle. Constraint: if \mathbf{ncc} > 0, \mathbf{pdc} \ge \max(1, \mathbf{n}); otherwise \mathbf{pdc} \ge 1. On entry, \mathbf{pdvt} = \langle value \rangle, \mathbf{ncvt} = \langle value \rangle and \mathbf{n} = \langle value \rangle. Constraint: if \mathbf{ncvt} > 0, \mathbf{pdvt} \ge \max(1, \mathbf{n}); otherwise \mathbf{pdvt} \ge 1. ``` #### NE INTERNAL ERROR An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance. An unexpected error has been triggered by this function. Please contact NAG. See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information. ### NE NO LICENCE Your licence key may have expired or may not have been installed correctly. See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information. ## 7 Accuracy Each singular value and singular vector is computed to high relative accuracy. However, the reduction to bidiagonal form (prior to calling the function) may exclude the possibility of obtaining high relative accuracy in the small singular values of the original matrix if its singular values vary widely in magnitude. If σ_i is an exact singular value of B and $\tilde{\sigma}_i$ is the corresponding computed value, then $$|\tilde{\sigma}_i - \sigma_i| \le p(m, n)\epsilon\sigma_i$$ f08mec NAG Library Manual where p(m,n) is a modestly increasing function of m and n, and ϵ is the **machine precision**. If only singular values are computed, they are computed more accurately (i.e., the function p(m,n) is smaller), than when some singular vectors are also computed. If u_i is the corresponding exact left singular vector of B, and \tilde{u}_i is the corresponding computed left singular vector, then the angle $\theta(\tilde{u}_i, u_i)$ between them is bounded as follows: $$\theta(\tilde{u}_i, u_i) \le \frac{p(m, n)\epsilon}{relgap_i}$$ where $relgap_i$ is the relative gap between σ_i and the other singular values, defined by $$relgap_i = \min_{i \neq j} \frac{\left|\sigma_i - \sigma_j\right|}{\left(\sigma_i + \sigma_j\right)}.$$ A similar error bound holds for the right singular vectors. # 8 Parallelism and Performance nag_dbdsqr (f08mec) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library. nag_dbdsqr (f08mec) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information. Please consult the x06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information. # 9 Further Comments The total number of floating-point operations is roughly proportional to n^2 if only the singular values are computed. About $6n^2 \times nru$ additional operations are required to compute the left singular vectors and about $6n^2 \times ncvt$ to compute the right singular vectors. The operations to compute the singular values must all be performed in scalar mode; the additional operations to compute the singular vectors can be vectorized and on some machines may be performed much faster. The complex analogue of this function is nag zbdsqr (f08msc). ## 10 Example This example computes the singular value decomposition of the upper bidiagonal matrix B, where $$B = \begin{pmatrix} 3.62 & 1.26 & 0.00 & 0.00 \\ 0.00 & -2.41 & -1.53 & 0.00 \\ 0.00 & 0.00 & 1.92 & 1.19 \\ 0.00 & 0.00 & 0.00 & -1.43 \end{pmatrix}.$$ See also the example for nag_dorgbr (f08kfc), which illustrates the use of the function to compute the singular value decomposition of a general matrix. # 10.1 Program Text ``` /* nag_dbdsqr (f08mec) Example Program. * NAGPRODCODE Version. * Copyright 2016 Numerical Algorithms Group. * Mark 26, 2016. */ ``` f08mec.6 Mark 26 ``` #include <stdio.h> #include <nag.h> #include <nag_stdlib.h> #include <nagf08.h> #include <nagf16.h> #include <nagx04.h> int main(void) /* Scalars */ Integer i, n, pdvt, pdu; Integer exit_status = 0, ncc = 0, ldc = 1; double zero = 0.0, one = 1.0; /* Arrays */ char nag_enum_arg[40]; double c[1]; double *d = 0, *e = 0, *u = 0, *vt = 0; /* Nag Types */ NagError fail; Nag_UploType uplo; Nag_OrderType order; INIT_FAIL(fail); printf("nag_dbdsqr (f08mec) Example Program Results\n\n"); /* Skip heading in data file */ #ifdef _WIN32 scanf_s("%*[^\n]"); #else scanf("%*[^\n]"); #endif #ifdef _WIN32 scanf_s("%" NAG_IFMT "%*[^\n]", &n); scanf("%" NAG_IFMT "%*[^\n]", &n); #endif if (n < 0) { printf("Invalid n\n"); exit_status = 1; goto END; #ifdef NAG_COLUMN_MAJOR order = Nag_ColMajor; #else order = Nag_RowMajor; #endif pdu = n; pdvt = n; /* Allocate memory */ if (!(d = NAG_ALLOC(n, double)) || !(e = NAG_ALLOC(n - 1, double)) | | !(u = NAG_ALLOC(n * n, double)) || !(vt = NAG_ALLOC(n * n, double))) printf("Allocation failure\n"); exit_status = -1; goto END; /* Read B from data file */ #ifdef _WIN32 for (i = 0; i < n; ++i) scanf_s("%lf", &d[i]); #else for (i = 0; i < n; ++i) scanf("%lf", &d[i]); #endif #ifdef _WIN32 ``` ``` scanf_s("%*[^\n]"); scanf("%*[^\n]"); #endif #ifdef _WIN32 for (i = 0; i < n - 1; ++i) scanf_s("%lf", &e[i]); for (i = 0; i < n - 1; ++i) scanf("%lf", &e[i]); #endif #ifdef _WIN32 scanf_s("%*[^\n]"); #else scanf("%*[^\n]"); #endif #ifdef _WIN32 scanf_s("%39s%*[^\n]", nag_enum_arg, (unsigned)_countof(nag_enum_arg)); scanf("%39s%*[^\n]", nag_enum_arg); #endif /* nag_enum_name_to_value (x04nac). * Converts NAG enum member name to value uplo = (Naq_UploType) naq_enum_name_to_value(naq_enum_arg); /* Initialize U and VT to be the unit matrix to obtain SVD of input * bidiagonal matrix nag_dge_load (f16qhc). * General matrix initialization. nag_dge_load(order, n, n, zero, one, u, pdu, &fail); naq_dge_load(order, n, n, zero, one, vt, pdvt, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_dge_load (f16qhc).\n%s\n", fail.message); exit_status = 1; goto END; } /* nag_dbdsqr (f08mec). * SVD of real bidiagonal matrix reduced from real general * matrix. nag_dbdsqr(order, uplo, n, n, n, ncc, d, e, vt, pdvt, u, pdu, c, ldc, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_dbdsqr (f08mec).\n%s\n", fail.message); exit_status = 1; goto END; /* Print singular values, left & right singular vectors */ "); printf("\nSingular values\n for (i = 0; i < n; ++i) printf(" %7.4f%s", d[i], i % 8 == 7 ? "\n" : ""); printf("\n\n"); /* nag_gen_real_mat_print (x04cac). * Print real general matrix (easy-to-use) * / fflush(stdout); nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, vt, pdvt, "Right singular vectors, by row", 0, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message); exit_status = 1; goto END; printf("\n"); /* nag_gen_real_mat_print (x04cac), see above. */ fflush(stdout); ``` f08mec.8 Mark 26 2 -0.3935 0.7005 0.5489 0.2307 3 0.1081 -0.5904 0.6173 0.5086 4 -0.0132 0.1444 -0.5417 0.8280 ``` nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, u, pdu, "Left singular vectors, by column", 0, &fail); if (fail.code != NE_NOERROR) { printf("Error from nag_gen_real_mat_print (x04cac).\n%s\n", fail.message); exit_status = 1; goto END; END: NAG_FREE(d); NAG_FREE(e); NAG_FREE(u); NAG_FREE(vt); return exit_status; 10.2 Program Data nag_dbdsqr (f08mec) Example Program Data : n 3.62 -2.41 1.92 -1.43 : main diagonal 1.26 -1.53 1.19 : off diagonal Nag_Upper : uplo 10.3 Program Results nag_dbdsqr (f08mec) Example Program Results Singular values 4.0001 3.0006 1.9960 0.9998 Right singular vectors, by row 2 3 0.8261 0.5246 0.2024 0.0369 1 0.4512 -0.4056 -0.7350 -0.3030 0.2823 -0.5644 0.1731 0.7561 0.1852 -0.4916 0.6236 -0.5789 Left singular vectors, by column 1 2 0.9129 0.3740 0.1556 0.0512 ``` Mark 26 f08mec.9 (last)