
NAG Library Function Document

nag_opt_sparse_convex_qp (e04nkc)

1 Purpose

nag_opt_sparse_convex_qp (e04nkc) solves sparse linear programming or convex quadratic program-
ming problems.

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_sparse_convex_qp (Integer n, Integer m, Integer nnz,
Integer iobj, Integer ncolh,

void (*qphx)(Integer ncolh, const double x[], double hx[],
Nag_Comm *comm),

const double a[], const Integer ha[], const Integer ka[],
const double bl[], const double bu[], double xs[], Integer *ninf,
double *sinf, double *obj, Nag_E04_Opt *options, Nag_Comm *comm,
NagError *fail)

3 Description

nag_opt_sparse_convex_qp (e04nkc) is designed to solve a class of quadratic programming problems
that are assumed to be stated in the following general form:

minimize
x2Rn

f xð Þ subject to l � x
Ax

� �
� u; ð1Þ

where x is a set of variables, A is an m by n matrix and the objective function f xð Þ may be specified in
a variety of ways depending upon the particular problem to be solved. The optional parameter
options:minimize (see Section 12.2) may be used to specify an alternative problem in which f xð Þ is
maximized. The possible forms for f xð Þ are listed in Table 1 below, in which the prefixes FP, LP and
QP stand for ‘feasible point’, ‘linear programming’ and ‘quadratic programming’ respectively, c is an n
element vector and H is the n by n second-derivative matrix r2f xð Þ (the Hessian matrix).

Problem Type Objective Function f xð Þ Hessian Matrix H

FP Not applicable Not applicable
LP cTx Not applicable
QP cTxþ 1

2x
THx Symmetric positive semidefinite

Table 1

For LP and QP problems, the unique global minimum value of f xð Þ is found. For FP problems, f xð Þ is
omitted and the function attempts to find a feasible point for the set of constraints. For QP problems, a
function must also be provided to compute Hx for any given vector x. (H need not be stored
explicitly.)

nag_opt_sparse_convex_qp (e04nkc) is intended to solve large-scale linear and quadratic programming
problems in which the constraint matrix A is sparse (i.e., when the number of zero elements is
sufficiently large that it is worthwhile using algorithms which avoid computations and storage involving
zero elements). nag_opt_sparse_convex_qp (e04nkc) also takes advantage of sparsity in c. (Sparsity in
H can be exploited in the function that computes Hx.) For problems in which A can be treated as a
dense matrix, it is usually more efficient to use nag_opt_lp (e04mfc), nag_opt_lin_lsq (e04ncc) or
nag_opt_qp (e04nfc).
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If H is positive definite, then the final x will be unique. If nag_opt_sparse_convex_qp (e04nkc) detects
that H is indefinite, it terminates immediately with an error condition (see Section 6). In that case, it
may be more appropriate to call nag_opt_nlp_sparse (e04ugc) instead. If H is the zero matrix, the
function will still solve the resulting LP problem; however, this can be accomplished more efficiently
by setting the argument ncolh ¼ 0 (see Section 5).

The upper and lower bounds on the m elements of Ax are said to define the general constraints of the
problem. Internally, nag_opt_sparse_convex_qp (e04nkc) converts the general constraints to equalities
by introducing a set of slack variables s, where s ¼ s1; s2; . . . ; smð ÞT. For example, the linear constraint
5 � 2x1 þ 3x2 � þ1 is replaced by 2x1 þ 3x2 � s1 ¼ 0, together with the bounded slack
5 � s1 � þ1. The problem defined by (1) can therefore be re-written in the following equivalent form:

minimize
x2Rn;s2Rm

f xð Þ subject to Ax� s ¼ 0; l � x
s

� �
� u:

Since the slack variables s are subject to the same upper and lower bounds as the elements of Ax, the
bounds on Ax and x can simply be thought of as bounds on the combined vector x; sð Þ. (In order to
indicate their special role in QP problems, the original variables x are sometimes known as ‘column
variables’, and the slack variables s are known as ‘row variables’.)

Each LP or QP problem is solved using an active-set method. This is an iterative procedure with two
phases: a feasibility phase, in which the sum of infeasibilities is minimized to find a feasible point; and
an optimality phase, in which f xð Þ is minimized by constructing a sequence of iterations that lies within
the feasible region.

A constraint is said to be active or binding at x if the associated element of either x or Ax is equal to
one of its upper or lower bounds. Since an active constraint in Ax has its associated slack variable at a
bound, the status of both simple and general upper and lower bounds can be conveniently described in
terms of the status of the variables x; sð Þ. A variable is said to be nonbasic if it is temporarily fixed at
its upper or lower bound. It follows that regarding a general constraint as being active is equivalent to
thinking of its associated slack as being nonbasic.

At each iteration of an active-set method, the constraints Ax� s ¼ 0 are (conceptually) partitioned into
the form

BxB þ SxS þNxN ¼ 0;

where xN consists of the nonbasic elements of x; sð Þ and the basis matrix B is square and nonsingular.
The elements of xB and xS are called the basic and superbasic variables respectively; with xN they are
a permutation of the elements of x and s. At a QP solution, the basic and superbasic variables will lie
somewhere between their upper or lower bounds, while the nonbasic variables will be equal to one of
their bounds. At each iteration, xS is regarded as a set of independent variables that are free to move in
any desired direction, namely one that will improve the value of the objective function (or sum of
infeasibilities). The basic variables are then adjusted in order to ensure that x; sð Þ continues to satisfy
Ax� s ¼ 0. The number of superbasic variables (nS say) therefore indicates the number of degrees of
freedom remaining after the constraints have been satisfied. In broad terms, nS is a measure of how
nonlinear the problem is. In particular, nS will always be zero for FP and LP problems.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic
variable is selected to be added to S, and the process is repeated with the value of nS increased by one.
At all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made
nonbasic and the value of nS is decreased by one.

Associated with each of the m equality constraints Ax� s ¼ 0 is a dual variable �i. Similarly, each
variable in x; sð Þ has an associated reduced gradient dj (also known as a reduced cost). The reduced
gradients for the variables x are the quantities g�AT�, where g is the gradient of the QP objective
function; and the reduced gradients for the slack variables s are the dual variables �. The QP
subproblem is optimal if dj � 0 for all nonbasic variables at their lower bounds, dj � 0 for all nonbasic
variables at their upper bounds and dj ¼ 0 for all superbasic variables. In practice, an approximate QP
solution is found by slightly relaxing these conditions on dj (see the description of the optional
parameter options:optim tol in Section 12.2).
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The process of computing and comparing reduced gradients is known as pricing (a term first introduced
in the context of the simplex method for linear programming). To ‘price’ a nonbasic variable xj means
that the reduced gradient dj associated with the relevant active upper or lower bound on xj is computed
via the formula dj ¼ gj � aT�, where aj is the jth column of A �I

� �
. (The variable selected by such

a process and the corresponding value of dj (i.e., its reduced gradient) are the quantities +S and dj in
the detailed printed output from nag_opt_sparse_convex_qp (e04nkc); see Section 12.3.) If A has
significantly more columns than rows (i.e., n � m), pricing can be computationally expensive. In this
case, a strategy known as partial pricing can be used to compute and compare only a subset of the dj's.

nag_opt_sparse_convex_qp (e04nkc) is based on SQOPT, which is part of the SNOPT package
described in Gill et al. (2002), which in turn utilizes routines from the MINOS package (see Murtagh
and Saunders (1995)). It uses stable numerical methods throughout and includes a reliable basis
package (for maintaining sparse LU factors of the basis matrix B), a practical anti-degeneracy
procedure, efficient handling of linear constraints and bounds on the variables (by an active-set
strategy), as well as automatic scaling of the constraints. Further details can be found in Section 9.
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5 Arguments

1: n – Integer Input

On entry: n, the number of variables (excluding slacks). This is the number of columns in the
linear constraint matrix A.

Constraint: n � 1.

2: m – Integer Input

On entry: m, the number of general linear constraints (or slacks). This is the number of rows in
A, including the free row (if any; see argument iobj).

Constraint: m � 1.

3: nnz – Integer Input

On entry: the number of nonzero elements in A.

Constraint: 1 � nnz � n�m.
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4: iobj – Integer Input

On entry: if iobj > 0, row iobj of A is a free row containing the nonzero elements of the vector c
appearing in the linear objective term cTx.

If iobj ¼ 0, there is no free row – i.e., the problem is either an FP problem (in which case iobj
must be set to zero), or a QP problem with c ¼ 0.

Constraint: 0 � iobj � m.

5: ncolh – Integer Input

On entry: nH , the number of leading nonzero columns of the Hessian matrix H. For FP and LP
problems, ncolh must be set to zero.

Constraint: 0 � ncolh � n.

6: qphx – function, supplied by the user External Function

qphx must be supplied for QP problems to compute the matrix product Hx. If H has zero rows
and columns, it is most efficient to order the variables x ¼ y zð ÞT so that

Hx ¼ H1 0
0 0

� �
y
z

� �
¼ H1y

0

� �
;

where the nonlinear variables y appear first as shown. For FP and LP problems, qphx will never
be called and the NAG defined null function pointer, NULLFN, can be supplied in the call to
nag_opt_sparse_convex_qp (e04nkc).

The specification of qphx is:

void qphx (Integer ncolh, const double x[], double hx[],
Nag_Comm *comm)

1: ncolh – Integer Input

On entry: the number of leading nonzero columns of the Hessian matrix H, as supplied
to nag_opt_sparse_convex_qp (e04nkc).

2: x½ncolh� – const double Input

On entry: the first ncolh elements of x.

3: hx½ncolh� – double Output

On exit: the product Hx.

4: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to qphx.

first – Nag_Boolean Input

On entry: will be set to Nag_TRUE on the first call to qphx and Nag_FALSE for
all subsequent calls.

nf – Integer Input

On entry: the number of evaluations of the objective function; this value will be
equal to the number of calls made to qphx including the current one.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void * or char
*.
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Before calling nag_opt_sparse_convex_qp (e04nkc) these pointers may be
allocated memory and initialized with various quantities for use by qphx when
called from nag_opt_sparse_convex_qp (e04nkc).

Note: qphx should be tested separately before being used in conjunction with nag_opt_sparse_
convex_qp (e04nkc). The array x must not be changed by qphx.

7: a½nnz� – const double Input

On entry: the nonzero elements of A, ordered by increasing column index. Note that elements
with the same row and column indices are not allowed. The row and column indices are specified
by arguments ha and ka (see below).

8: ha½nnz� – const Integer Input

On entry: ha½i� must contain the row index of the nonzero element stored in a½i�, for
i ¼ 0; 1; . . . ;nnz� 1. Note that the row indices for a column may be supplied in any order.

Constraint: 1 � ha½i� � m, for i ¼ 0; 1; . . . ; nnz� 1.

9: ka½nþ 1� – const Integer Input

On entry: ka½j � 1� must contain the index in a of the start of the jth column, for j ¼ 1; 2; . . . ; n.
To specify the jth column as empty, set ka½j� 1� ¼ ka½j�. Note that the first and last elements of
ka must be such that ka½0� ¼ 0 and ka½n� ¼ nnz.

Constraints:

ka½0� ¼ 0;
ka½j � 1� � 0, for j ¼ 2; 3; . . . ;n;
ka½n� ¼ nnz;
0 � ka½j� � ka½j � 1� � m, for j ¼ 1; 2; . . . ;n.

10: bl½nþm� – const double Input
11: bu½nþm� – const double Input

On entry: bl must contain the lower bounds and bu the upper bounds, for all the constraints in
the following order. The first n elements of each array must contain the bounds on the variables,
and the next m elements the bounds for the general linear constraints Ax and the free row (if
any). To specify a nonexistent lower bound (i.e., lj ¼ �1), set bl½j� 1� � �options:inf bound,
and to specify a nonexistent upper bound (i.e., uj ¼ þ1), set bu½j� 1� � options:inf bound,
where options:inf bound is one of the optional parameters (default value 1020, see Section 12.2).
To specify the jth constraint as an equality, set bl½j� 1� ¼ bu½j� 1� ¼ �, say, where
�j j < options:inf bound. Note that, for LP and QP problems, the lower bound corresponding
to the free row must be set to �1 and stored in bl½nþ iobj� 1�; similarly, the upper bound must
be set to þ1 and stored in bu½nþ iobj� 1�.
Constraints:

bl½j� � bu½j�, for j ¼ 0; 1; . . . ; nþm� 1;
if bl½j� ¼ bu½j� ¼ �, �j j < options:inf bound;
if iobj > 0, bl½nþ iobj� 1� � �options:inf bound and
bu½nþ iobj� 1� � options:inf bound.

12: xs½nþm� – double Input/Output

On entry: xs½j � 1�, for j ¼ 1; 2; . . . ; n, must contain the initial values of the variables, x. In
addition, if a ‘warm start’ is specified by means of the optional parameter options:start (see
Section 12.2) the elements xs½nþ i � 1�, for i ¼ 1; 2; . . . ;m, must contain the initial values of the
slack variables, s.

On exit: the final values of the variables and slacks x; sð Þ.
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13: ninf – Integer * Output

On exit: the number of infeasibilities. This will be zero if an optimal solution is found, i.e., if
nag_opt_sparse_convex_qp (e04nkc) exits with fail:code ¼ NE NOERROR or NW_SOLN_NO-
T_UNIQUE.

14: sinf – double * Output

On exit: the sum of infeasibilities. This will be zero if ninf ¼ 0. (Note that nag_opt_sparse_
convex_qp (e04nkc) does attempt to compute the minimum value of sinf in the event that the
problem is determined to be infeasible, i.e., when nag_opt_sparse_convex_qp (e04nkc) exits with
fail:code ¼ NW NOT FEASIBLE.)

15: obj – double * Output

On exit: the value of the objective function.

If ninf ¼ 0, obj includes the quadratic objective term 1
2x

THx (if any).

If ninf > 0, obj is just the linear objective term cTx (if any).

For FP problems, obj is set to zero.

16: options – Nag_E04_Opt * Input/Output

On entry/exit: a pointer to a structure of type Nag_E04_Opt whose members are optional
parameters for nag_opt_sparse_convex_qp (e04nkc). These structure members offer the means of
adjusting some of the argument values of the algorithm and on output will supply further details
of the results. A description of the members of options is given below in Section 12. Some of the
results returned in options can be used by nag_opt_sparse_convex_qp (e04nkc) to perform a
‘warm start’ (see the member options:start in Section 12.2).

The options structure also allows names to be assigned to the columns and rows (i.e., the
variables and constraints) of the problem, which are then used in solution output.

If any of these optional parameters are required then the structure options should be declared and
initialized by a call to nag_opt_init (e04xxc) and supplied as an argument to nag_opt_sparse_
convex_qp (e04nkc). However, if the optional parameters are not required the NAG defined null
pointer, E04_DEFAULT, can be used in the function call.

17: comm – Nag_Comm * Input/Output

Note: comm is a NAG defined type (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

On entry/exit: structure containing pointers for communication to the user-supplied function,
qphx, and the optional user-defined printing function; see the description of qphx and
Section 12.3.1 for details. If you do not need to make use of this communication feature the null
pointer NAGCOMM_NULL may be used in the call to nag_opt_sparse_convex_qp (e04nkc); comm
will then be declared internally for use in calls to user-supplied functions.

18: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

5.1 Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be controlled
w i t h t h e s t r u c t u r e membe r options:print level ( s e e Sec t i on 12 .2 ) . The de f au l t ,
options:print level ¼ Nag Soln Iter, provides a single line of output at each iteration and the final
result. This section describes the default printout produced by nag_opt_sparse_convex_qp (e04nkc).

The following line of summary output (< 80 characters) is produced at every iteration. In all cases, the
values of the quantities printed are those in effect on completion of the given iteration.
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Itn is the iteration count.

Step is the step taken along the computed search direction.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the current value of the objective function. If x is not feasible, Sinf gives the
sum of magnitudes of constraint violations. If x is feasible, Objective is the value
of the objective function. The output line for the final iteration of the feasibility
phase (i.e., the first iteration for which Ninf is zero) will give the value of the true
objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities will
not increase until either a feasible point is found, or the optimality of the multipliers
implies that no feasible point exists.

Norm rg is dSk k, the Euclidean norm of the reduced gradient (see Section 11.3). During the
optimality phase, this norm will be approximately zero after a unit step. For FP and
LP problems, Norm rg is not printed.

The final printout includes a listing of the status of every variable and constraint. The following
describes the printout for each variable.

Variable gives the name of variable j, for j ¼ 1; 2; . . . ; n. If an options structure is supplied
to nag_opt_sparse_convex_qp (e04nkc), and the options:crnames member is
assigned to an array of column and row names (see Section 12.2 for details), the
name supplied in options:crnames½j� 1� is assigned to the jth variable. Otherwise,
a default name is assigned to the variable.

State gives the state of the variable (LL if nonbasic on its lower bound, UL if nonbasic on
its upper bound, EQ if nonbasic and fixed, FR if nonbasic and strictly between its
bounds, BS if basic and SBS if superbasic).

A key is sometimes printed before State to give some additional information about
the state of a variable. Note that unless the optional parameter
options:scale ¼ Nag NoScale (default value is options:scale ¼ Nag ExtraScale; see
Section 12.2) is specified, the tests for assigning a key are applied to the variables of
the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if the variable were allowed to
start moving away from its bound, there would be no change in the value of
the objective function. The values of the other free variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them could encounter a bound immediately. In either case, the values of the
Lagrange multipliers might also change.

D Degenerate. The variable is basic or superbasic, but it is equal to (or very
close to) one of its bounds.

I Infeasible. The variable is basic or superbasic and is currently violating one
of its bounds by more than the value of the optional parameter options:ftol
(default value ¼ max 10�6;

ffiffi
�

p� �
, where � is the machine precision; see

Section 12.2).

N Not precisely optimal. The variable is nonbasic or superbasic. If the value of
the reduced gradient for the variable exceeds the value of the optional
parameter options:optim tol (defaul t value ¼ max 10�6;

ffiffi
�

p� �
; see

Section 12.2), the solution would not be declared optimal because the
reduced gradient for the variable would not be considered negligible.

Value is the value of the variable at the final iteration.
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Lower Bound is the lower bound specified for variable j. (None indicates that
bl½j� 1� � �options:inf bound, where options:inf bound is the optional para-
meter.)

Upper Bound is the upper bound specified for variable j. (None indicates that
bu½j� 1� � options:inf bound.)

Lagr Mult is the value of the Lagrange multiplier for the associated bound. This will be zero if
State is FR. If x is optimal, the multiplier should be non-negative if State is LL,
non-positive if State is UL, and zero if State is BS or SBS.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
bl½j� 1� and bu½j� 1�. A blank entry indicates that the associated variable is not
bounded (i.e., bl½j� 1� � �options:inf bound and bu½j� 1� � options:inf bound).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, n replaced by m, options:crnames½j� 1� replaced by
options:crnames½nþ j� 1�, bl½j� 1� and bu½j� 1� replaced by bl½nþ j� 1� and bu½nþ j� 1�
respectively, and with the following change in the heading:

Constrnt gives the name of the linear constraint.

Note that the movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Residual column to become positive.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_ARRAY_CONS

The contents of array ka are not valid.
Constraint: 0 � ka½iþ 1� � ka½i� � m, for 0 � i < n.

The contents of array ka are not valid.
Constraint: ka½0� ¼ 0.

The contents of array ka are not valid.
Constraint: ka½n� ¼ nnz.

NE_BAD_PARAM

On entry, argument options:crash had an illegal value.

On entry, argument options:print level had an illegal value.

On entry, argument options:scale had an illegal value.

On entry, argument options:start had an illegal value.

NE_BASIS_ILL_COND

Numerical error in trying to satisfy the general constraints. The basis is very ill conditioned.

NE_BASIS_SINGULAR

The basis is singular after 15 attempts to factorize it.

The basis is singular after 15 attempts to factorize it (adding slacks where necessary). Either the
problem is badly scaled or the value of the optional parameter options:lu factor tol is too large;
see Section 12.2.
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NE_BOUND

The lower bound for variable valueh i (array element bl½ valueh i�) is greater than the upper bound.

NE_BOUND_EQ

The lower bound and upper bound for variable valueh i (array elements bl½ valueh i� and
bu½ valueh i�) are equal but they are greater than or equal to options:inf bound.

NE_BOUND_EQ_LCON

The lower bound and upper bound for linear constraint valueh i (array elements bl½ valueh i� and
bu½ valueh i�) are equal but they are greater than or equal to options:inf bound.

NE_BOUND_LCON

The lower bound for linear constraint valueh i (array element bl½ valueh i�) is greater than the upper
bound.

NE_DUPLICATE_ELEMENT

Duplicate sparse matrix element found in row valueh i, column valueh i.

NE_HESS_INDEF

The Hessian matrix H appears to be indefinite.

The Hessian matrix ZTHZ (see Section 11.2) appears to be indefinite – normally because H is
indefinite. Check that function qphx has been coded correctly. If qphx is coded correctly with H
symmetric positive (semi-)definite, then the problem may be due to a loss of accuracy in the
internal computation of the reduced Hessian. Try to reduce the values of the optional parameters
options:lu factor tol and options:lu update tol (see Section 12.2).

NE_HESS_TOO_BIG

Reduced Hessian exceeds assigned dimension. options:max sb ¼ valueh i.
The reduced Hessian matrix ZTHZ (see Section 11.2) exceeds its assigned dimension. The value
of the optional parameter options:max sb is too small; see Section 12.2.

NE_INT_ARG_LT

On entry, m ¼ valueh i.
Constraint: m � 1.

On entry, n ¼ valueh i.
Constraint: n � 1.

NE_INT_ARRAY_1

Value valueh i given to ka½ valueh i� not valid. Correct range for elements of ka is � 0.

NE_INT_ARRAY_2

Value valueh i given to ha½ valueh i� not valid. Correct range for elements of ha is 1 to m.

NE_INT_OPT_ARG_LT

On entry, options:factor freq ¼ valueh i.
Constraint: options:factor freq � 1.

On entry, options:fcheck ¼ valueh i.
Constraint: options:fcheck � 1.

On entry, options:max iter ¼ valueh i.
Constraint: options:max iter � 0.
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On entry, options:max sb ¼ valueh i.
Constraint: options:max sb � 1.

On entry, options:nsb ¼ valueh i.
Constraint: options:nsb � 0.

On entry, options:partial price ¼ valueh i.
Constraint: options:partial price � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_INVALID_INT_RANGE_1

Value valueh i given to iobj is not valid. Correct range is 0 � iobj � m.

Value valueh i given to ncolh is not valid. Correct range is 0 � ncolh � n.

Value valueh i given to nnz is not valid. Correct range is 1 � nnz � n�m.

NE_INVALID_INT_RANGE_2

Va l u e valueh i g i v e n t o options:reset ftol i s n o t v a l i d . C o r r e c t r a n g e i s
0 < options:reset ftol < 10000000.

NE_INVALID_REAL_RANGE_F

Value valueh i given to options:ftol is not valid. Correct range is options:ftol � �.

Value valueh i given to options:inf bound is not valid. Correct range is options:inf bound > 0:0.

Value valueh i given to options:inf step is not valid. Correct range is options:inf step > 0:0.

Va l u e valueh i g i v en t o options:lu factor tol i s n o t v a l i d . Co r r e c t r a ng e i s
options:lu factor tol � 1:0.

Value valueh i given to options:lu sing tol is not valid. Correct range is options:lu sing tol > 0:0.

Va lue valueh i g iven to options:lu update tol i s no t va l i d . Co r r e c t r ange i s
options:lu update tol � 1:0.

Value valueh i given to options:optim tol is not valid. Correct range is options:optim tol � �.

Value valueh i given to options:pivot tol is not valid. Correct range is options:pivot tol > 0:0.

NE_INVALID_REAL_RANGE_FF

Va l u e valueh i g i v e n t o options:crash tol i s n o t v a l i d . C o r r e c t r a n g e i s
0:0 � options:crash tol < 1:0.

Va l u e valueh i g i v e n t o options:scale tol i s n o t v a l i d . C o r r e c t r a n g e i s
0:0 < options:scale tol < 1:0.

NE_NAME_TOO_LONG

The string pointed to by options:crnames½ valueh i� is too long. It should be no longer than 8
characters.

NE_NOT_APPEND_FILE

Cannot open file stringh i for appending.

NE_NOT_CLOSE_FILE

Cannot close file stringh i.
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NE_NULL_QPHX

Since argument ncolh is nonzero, the problem is assumed to be of type QP. However, the
argument qphx is a null function. qphx must be non-null for QP problems.

NE_OBJ_BOUND

Invalid lower bound for objective row. Bound should be � valueh i.
Invalid upper bound for objective row. Bound should be � valueh i.

NE_OPT_NOT_INIT

Options structure not initialized.

NE_OUT_OF_WORKSPACE

There is insufficient workspace for the basis factors, and the maximum allowed number of
reallocation attempts, as specified by options.max_restart, has been reached.

NE_STATE_VAL

options:state½ valueh i� is out of range. options:state½ valueh i� ¼ valueh i.

NE_UNBOUNDED

Solution appears to be unbounded.

The problem is unbounded (or badly scaled). The objective function is not bounded below in the
feasible region.

NE_WRITE_ERROR

Error occurred when writing to file stringh i.

NW_NOT_FEASIBLE

No feasible point was found for the linear constraints.

The problem is infeasible. The general constraints cannot all be satisfied simultaneously to within
the value of the optional parameter options:ftol; see Section 12.2.

NW_SOLN_NOT_UNIQUE

Optimal solution is not unique.

Weak solution found. The final x is not unique, although x gives the global minimum value of
the objective function.

NW_TOO_MANY_ITER

The maximum number of iterations, valueh i, have been performed.

Too many iterations. The value of the optional parameter options:max iter is too small; see
Section 12.2.

7 Accuracy

nag_opt_sparse_convex_qp (e04nkc) implements a numerically stable active set strategy and returns
solutions that are as accurate as the condition of the problem warrants on the machine.

8 Parallelism and Performance

nag_opt_sparse_convex_qp (e04nkc) is not threaded in any implementation.
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9 Further Comments

None.

10 Example

To minimize the quadratic function f xð Þ ¼ cTxþ 1
2x

THx , where

c ¼ �200;�2000;�2000;�2000;�2000; 400; 400ð ÞT

H ¼

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 2
0 0 0 0 0 2 2

0
BBBBBBB@

1
CCCCCCCA

subject to the bounds

0 � x1 � 200
0 � x2 � 2500

400 � x3 � 800
100 � x4 � 700

0 � x5 � 1500
0 � x6
0 � x7

and the general constraints

x1þ x2þ x3þ x4þ x5þ x6þ x7 ¼ 2000
0:15x1þ 0:04x2þ 0:02x3þ 0:04x4þ 0:02x5þ 0:01x6þ 0:03x7 � 60
0:03x1þ 0:05x2þ 0:08x3þ 0:02x4þ 0:06x5þ 0:01x6 � 100
0:02x1þ 0:04x2þ 0:01x3þ 0:02x4þ 0:02x5 � 40
0:02x1þ 0:03x2 þ 0:01x5 � 30

1500 � 0:70x1þ 0:75x2þ 0:80x3þ 0:75x4þ 0:80x5þ 0:97x6
250 � 0:02x1þ 0:06x2þ 0:08x3þ 0:12x4þ 0:02x5þ 0:01x6þ 0:97x7 � 300

The initial point, which is infeasible, is

x0 ¼ 0; 0; 0; 0; 0; 0; 0ð ÞT:
The optimal solution (to five figures) is

x� ¼ 0:0; 349:40; 648:85; 172:85; 407:52; 271:36; 150:02ð ÞT:
One bound constraint and four linear constraints are active at the solution. Note that the Hessian matrix
H is positive semidefinite.

The function to calculate Hx (qphx in the argument list; see Section 5) is qphess.

The example program shows the use of the options and comm structures. The data for the example
include a set of user-defined column and row names, and data for the Hessian in a sparse storage format
(see Section 10.2 for further details).

The options structure is initialized by nag_opt_init (e04xxc) and the options:crnames member is
assigned to the array of character strings into which the column and row names were read. The
comm!p member of comm is used to pass the Hessian into nag_opt_sparse_convex_qp (e04nkc) for
use by the function qphess.

On return from nag_opt_sparse_convex_qp (e04nkc), the Hessian data is perturbed slightly and two
further options set, selecting a warm start and a reduced level of printout. nag_opt_sparse_convex_qp
(e04nkc) is then called for a second time. Finally, the memory freeing function nag_opt_free (e04xzc) is
used to free the memory assigned by nag_opt_sparse_convex_qp (e04nkc) to the pointers in the options
structure. You must not use the standard C function free() for this purpose.
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The sparse storage scheme used for the Hessian in this example is similar to that which
nag_opt_sparse_convex_qp (e04nkc) uses for the constraint matrix a, but since the Hessian is
symmetric we need only store the lower triangle (including the diagonal) of the matrix. Thus, an array
hess contains the nonzero elements of the lower triangle arranged in order of increasing column index.
The array khess contains the indices in hess of the first element in each column, and the array hhess
contains the row index associated with each element in hess. To allow the data to be passed via the
comm!p member of comm, a struct HessianData is declared, containing pointer members which are
assigned to the three arrays defining the Hessian. Alternative approaches would have been to use the
comm!user and comm!iuser members of comm to pass suitably partitioned arrays to qphess, or to
avoid the use of comm altogether and declare the Hessian data as global. The storage scheme suggested
here is for illustrative purposes only.

10.1 Program Text

/* nag_opt_sparse_convex_qp (e04nkc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*
*/

#include <nag.h>
#include <stdio.h>
#include <string.h>
#include <nag_stdlib.h>
#include <nage04.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL qphess(Integer ncolh, const double x[], double hx[],
Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

/* Declare a data structure for passing sparse Hessian data to qphess */
typedef struct
{

double *hess;
Integer *khess;
Integer *hhess;

} HessianData;

#define NAMES(I, J) names[(I)*9+J]

int main(void)
{

HessianData hess_data;
Integer exit_status = 0, *ha = 0, *hhess = 0, i, icol, iobj, j, jcol;
Integer *ka = 0, *khess = 0, m, n, nbnd, ncolh, ninf, nnz, nnz_hess;
Nag_Comm comm;
Nag_E04_Opt options;
char **crnames = 0, *names = 0;
double *a = 0, *bl = 0, *bu = 0, *hess = 0, obj, sinf, *x = 0;
NagError fail;

INIT_FAIL(fail);

printf("nag_opt_sparse_convex_qp (e04nkc) Example Program Results\n");
fflush(stdout);

/* Skip heading in data file */
#ifdef _WIN32
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scanf_s(" %*[^\n]");
#else

scanf(" %*[^\n]");
#endif

/* Read the problem dimensions */
#ifdef _WIN32

scanf_s(" %*[^\n]");
#else

scanf(" %*[^\n]");
#endif
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%" NAG_IFMT "", &n, &m);
#else

scanf("%" NAG_IFMT "%" NAG_IFMT "", &n, &m);
#endif

/* Read nnz, iobj, ncolh */
#ifdef _WIN32

scanf_s(" %*[^\n]");
#else

scanf(" %*[^\n]");
#endif
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "", &nnz, &iobj, &ncolh);
#else

scanf("%" NAG_IFMT "%" NAG_IFMT "%" NAG_IFMT "", &nnz, &iobj, &ncolh);
#endif

if (n >= 1 && m >= 1 && nnz >= 1 && nnz <= n * m) {
nbnd = n + m;
if (!(a = NAG_ALLOC(nnz, double)) ||

!(bl = NAG_ALLOC(nbnd, double)) ||
!(bu = NAG_ALLOC(nbnd, double)) ||
!(x = NAG_ALLOC(nbnd, double)) ||
!(ha = NAG_ALLOC(nnz, Integer)) ||
!(ka = NAG_ALLOC(n + 1, Integer)) ||
!(khess = NAG_ALLOC(n + 1, Integer)) ||
!(crnames = NAG_ALLOC(nbnd, char *)) ||
!(names = NAG_ALLOC(nbnd * 9, char))

)
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}
else {

printf("Invalid n or m or nnz.\n");
exit_status = 1;
return exit_status;

}

/* Read the matrix and set up ka */
jcol = 1;
ka[jcol - 1] = 0;

#ifdef _WIN32
scanf_s(" %*[^\n]");

#else
scanf(" %*[^\n]");

#endif
for (i = 0; i < nnz; ++i) {

/* a[i] stores the (ha[i], icol) element of matrix */
#ifdef _WIN32

scanf_s("%lf%" NAG_IFMT "%" NAG_IFMT "", &a[i], &ha[i], &icol);
#else

scanf("%lf%" NAG_IFMT "%" NAG_IFMT "", &a[i], &ha[i], &icol);
#endif

/* Check whether we have started a new column */
if (icol == jcol + 1) {

ka[icol - 1] = i; /* Start of icol-th column in a */
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jcol = icol;
}
else if (icol > jcol + 1) {

/* Index in a of the start of the icol-th column
* equals i, but columns jcol+1, jcol+2, ...,
* icol-1 are empty. Set the corresponding elements
* of ka to i.
*/

for (j = jcol + 1; j < icol; ++j)
ka[j - 1] = i;

ka[icol - 1] = i;
jcol = icol;

}
}
ka[n] = nnz;

/* If the last columns are empty, set ka accordingly */
if (n > icol) {

for (j = icol; j <= n - 1; ++j)
ka[j] = nnz;

}

/* Read the bounds */
nbnd = n + m;

#ifdef _WIN32
scanf_s(" %*[^\n]"); /* Skip heading in data file */

#else
scanf(" %*[^\n]"); /* Skip heading in data file */

#endif
for (i = 0; i < nbnd; ++i)

#ifdef _WIN32
scanf_s("%lf", &bl[i]);

#else
scanf("%lf", &bl[i]);

#endif
#ifdef _WIN32

scanf_s(" %*[^\n]");
#else

scanf(" %*[^\n]");
#endif

for (i = 0; i < nbnd; ++i)
#ifdef _WIN32

scanf_s("%lf", &bu[i]);
#else

scanf("%lf", &bu[i]);
#endif

/* Read the column and row names */
#ifdef _WIN32

scanf_s(" %*[^\n]"); /* Skip heading in data file */
#else

scanf(" %*[^\n]"); /* Skip heading in data file */
#endif
#ifdef _WIN32

scanf_s(" %*[^’]");
#else

scanf(" %*[^’]");
#endif

for (i = 0; i < nbnd; ++i) {
#ifdef _WIN32

scanf_s(" ’%8c’", &NAMES(i, 0), 9);
#else

scanf(" ’%8c’", &NAMES(i, 0));
#endif

NAMES(i, 8) = ’\setminus 0’;
crnames[i] = &NAMES(i, 0);

}

/* Read the initial estimate of x */
#ifdef _WIN32
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scanf_s(" %*[^\n]"); /* Skip heading in data file */
#else

scanf(" %*[^\n]"); /* Skip heading in data file */
#endif

for (i = 0; i < n; ++i)
#ifdef _WIN32

scanf_s("%lf", &x[i]);
#else

scanf("%lf", &x[i]);
#endif

/* Read nnz_hess */
#ifdef _WIN32

scanf_s(" %*[^\n]");
#else

scanf(" %*[^\n]");
#endif
#ifdef _WIN32

scanf_s("%" NAG_IFMT "", &nnz_hess);
#else

scanf("%" NAG_IFMT "", &nnz_hess);
#endif

if (!(hess = NAG_ALLOC(nnz_hess, double)) ||
!(hhess = NAG_ALLOC(nnz_hess, Integer)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read the hessian matrix and set up khess */
jcol = 1;
khess[jcol - 1] = 0;

#ifdef _WIN32
scanf_s(" %*[^\n]");

#else
scanf(" %*[^\n]");

#endif
for (i = 0; i < nnz_hess; ++i) {

/* hess[i] stores the (hhess[i], icol) element of matrix */
#ifdef _WIN32

scanf_s("%lf%" NAG_IFMT "%" NAG_IFMT "", &hess[i], &hhess[i], &icol);
#else

scanf("%lf%" NAG_IFMT "%" NAG_IFMT "", &hess[i], &hhess[i], &icol);
#endif

/* Check whether we have started a new column */
if (icol == jcol + 1) {

khess[icol - 1] = i; /* Start of icol-th column in hess */
jcol = icol;

}
else if (icol > jcol + 1) {

/* Index in hess of the start of the icol-th column
* equals i, but columns jcol+1, jcol+2, ...,
* icol-1 are empty. Set the corresponding elements
* of khess to i.
*/

for (j = jcol + 1; j < icol; ++j)
khess[j - 1] = i;

khess[icol - 1] = i;
}

}
khess[ncolh] = nnz_hess;

/* Initialize options structure */
/* nag_opt_init (e04xxc).
* Initialization function for option setting
*/

nag_opt_init(&options);
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options.crnames = crnames;

/* Package up Hessian data for communication via comm */
hess_data.hess = hess;
hess_data.khess = khess;
hess_data.hhess = hhess;

comm.p = (Pointer) &hess_data;

/* Solve the problem */
/* nag_opt_sparse_convex_qp (e04nkc), see above. */
nag_opt_sparse_convex_qp(n, m, nnz, iobj, ncolh, qphess, a, ha, ka, bl, bu,

x, &ninf, &sinf, &obj, &options, &comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_opt_sparse_convex_qp (e04nkc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("\nPerturb the problem and re-solve with warm start.\n");
fflush(stdout);
for (i = 0; i < nnz_hess; ++i)

hess[i] *= 1.001;

options.start = Nag_Warm;
options.print_level = Nag_Soln;
/* nag_opt_sparse_convex_qp (e04nkc), see above. */
nag_opt_sparse_convex_qp(n, m, nnz, iobj, ncolh, qphess, a, ha, ka, bl, bu,

x, &ninf, &sinf, &obj, &options, &comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_opt_sparse_convex_qp (e04nkc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Free memory NAG-allocated to members of options */
/* nag_opt_free (e04xzc).
* Memory freeing function for use with option setting
*/

nag_opt_free(&options, "", &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_opt_free (e04xzc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

END:
NAG_FREE(a);
NAG_FREE(bl);
NAG_FREE(bu);
NAG_FREE(x);
NAG_FREE(hess);
NAG_FREE(ha);
NAG_FREE(ka);
NAG_FREE(hhess);
NAG_FREE(khess);
NAG_FREE(crnames);
NAG_FREE(names);

return exit_status;
}

static void NAG_CALL qphess(Integer ncolh, const double x[], double hx[],
Nag_Comm *comm)

{
Integer i, j, jrow;
HessianData *hd = (HessianData *) (comm->p);
double *hess = hd->hess;
Integer *hhess = hd->hhess;
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Integer *khess = hd->khess;

for (i = 0; i < ncolh; ++i)
hx[i] = 0.0;

for (i = 0; i < ncolh; ++i) {
/* For each column of Hessian */
for (j = khess[i]; j < khess[i + 1]; ++j) {

/* For each nonzero in column */

jrow = hhess[j] - 1;

/* Using symmetry of hessian, add contribution
* to hx of hess[j] as a diagonal or upper
* triangular element of hessian.
*/

hx[i] += hess[j] * x[jrow];

/* If hess[j] not a diagonal element add its
* contribution to hx as a lower triangular
* element of hessian.
*/

if (jrow != i)
hx[jrow] += hess[j] * x[i];

}
}

} /* qphess */

10.2 Program Data

nag_opt_sparse_convex_qp (e04nkc) Example Program Data

Values of n and m
7 8

Values of nnz, iobj and ncolh
48 8 7

Matrix nonzeros: value, row index, column index
0.02 7 1
0.02 5 1
0.03 3 1
1.00 1 1
0.70 6 1
0.02 4 1
0.15 2 1

-200.00 8 1
0.06 7 2
0.75 6 2
0.03 5 2
0.04 4 2
0.05 3 2
0.04 2 2
1.00 1 2

-2000.00 8 2
0.02 2 3
1.00 1 3
0.01 4 3
0.08 3 3
0.08 7 3
0.80 6 3

-2000.00 8 3
1.00 1 4
0.12 7 4
0.02 3 4
0.02 4 4
0.75 6 4
0.04 2 4

-2000.00 8 4
0.01 5 5
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0.80 6 5
0.02 7 5
1.00 1 5
0.02 2 5
0.06 3 5
0.02 4 5

-2000.00 8 5
1.00 1 6
0.01 2 6
0.01 3 6
0.97 6 6
0.01 7 6

400.00 8 6
0.97 7 7
0.03 2 7
1.00 1 7

400.00 8 7

Lower bounds
0.0 0.0 4.0e+02 1.0e+02 0.0 0.0 0.0 2.0e+03

-1.0e+25 -1.0e+25 -1.0e+25 -1.0e+25 1.5e+03 2.5e+02 -1.0e+25

Upper bounds
2.0e+02 2.5e+03 8.0e+02 7.0e+02 1.5e+03 1.0e+25 1.0e+25 2.0e+03
6.0e+01 1.0e+02 4.0e+01 3.0e+01 1.0e+25 3.0e+02 1.0e+25

Column and row names
’COLUMN 1’ ’COLUMN 2’ ’COLUMN 3’ ’COLUMN 4’ ’COLUMN 5’ ’COLUMN 6’ ’COLUMN 7’
’OBJECTIV’ ’ROW 1’ ’ROW 2’ ’ROW 3’ ’ROW 4’ ’ROW 5’ ’ROW 6’
’ROW 7’

Initial estimate of x
0.0 0.0 0.0 0.0 0.0 0.0 0.0

Number of hessian nonzeros
9

Hessian nonzeros: value, row index, col index (diagonal/lower triangle elements)
2.0 1 1
2.0 2 2
2.0 3 3
2.0 4 3
2.0 4 4
2.0 5 5
2.0 6 6
2.0 7 6
2.0 7 7

10.3 Program Results

nag_opt_sparse_convex_qp (e04nkc) Example Program Results

Parameters to e04nkc
--------------------

Problem type............ sparse QP Number of variables..... 7
Linear constraints...... 8 Hessian columns......... 7

prob_name...............
obj_name................ rhs_name................
range_name.............. bnd_name................
crnames................. supplied

minimize................ Nag_TRUE start................... Nag_Cold
ftol.................... 1.00e-06 reset_ftol.............. 10000
fcheck.................. 60 factor_freq............. 100
scale.............. Nag_ExtraScale scale_tol............... 9.00e-01
optim_tol............... 1.00e-06 max_iter................ 75
crash.............. Nag_CrashTwice crash_tol............... 1.00e-01
partial_price........... 10 pivot_tol............... 2.05e-11
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max_sb.................. 7
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
lu_factor_tol........... 1.00e+02 lu_update_tol........... 1.00e+01
lu_sing_tol............. 2.05e-11 machine precision....... 1.11e-16
print_level......... Nag_Soln_Iter
outfile................. stdout

Memory allocation:
state................... Nag lambda.................. Nag

Itn Step Ninf Sinf/Objective Norm rg
Itn 0 -- Infeasible

0 0.0e+00 1 1.152891e+03 0.0e+00
1 4.3e+02 0 0.000000e+00 0.0e+00

Itn 1 -- Feasible point found (for 1 equality constraints).
1 0.0e+00 0 0.000000e+00 0.0e+00
1 0.0e+00 0 1.460000e+06 0.0e+00

Itn 1 -- Feasible QP solution.
2 8.7e-02 0 9.409959e+05 0.0e+00
3 5.3e-01 0 -1.056552e+06 0.0e+00
4 1.0e+00 0 -1.462190e+06 4.1e-12
5 1.0e+00 0 -1.698092e+06 1.8e-12
6 4.6e-02 0 -1.764906e+06 7.0e+02
7 1.0e+00 0 -1.811946e+06 9.1e-13
8 1.7e-02 0 -1.847325e+06 1.7e+02
9 1.0e+00 0 -1.847785e+06 5.2e-12

Variable State Value Lower Bound Upper Bound Lagr Mult Residual
COLUMN 1 LL 0.00000e+00 0.0000e+00 2.0000e+02 2.361e+03 0.000e+00
COLUMN 2 BS 3.49399e+02 0.0000e+00 2.5000e+03 -1.062e-12 3.494e+02
COLUMN 3 SBS 6.48853e+02 4.0000e+02 8.0000e+02 -4.395e-12 1.511e+02
COLUMN 4 SBS 1.72847e+02 1.0000e+02 7.0000e+02 -2.274e-12 7.285e+01
COLUMN 5 BS 4.07521e+02 0.0000e+00 1.5000e+03 -2.067e-12 4.075e+02
COLUMN 6 BS 2.71356e+02 0.0000e+00 None 7.455e-13 2.714e+02
COLUMN 7 BS 1.50023e+02 0.0000e+00 None 4.710e-13 1.500e+02

Constrnt State Value Lower Bound Upper Bound Lagr Mult Residual
OBJECTIV EQ 2.00000e+03 2.0000e+03 2.0000e+03 -1.290e+04 -0.000e+00
ROW 1 BS 4.92316e+01 None 6.0000e+01 -1.349e-11 -1.077e+01
ROW 2 UL 1.00000e+02 None 1.0000e+02 -2.325e+03 0.000e+00
ROW 3 BS 3.20719e+01 None 4.0000e+01 0.000e+00 -7.928e+00
ROW 4 BS 1.45572e+01 None 3.0000e+01 0.000e+00 -1.544e+01
ROW 5 LL 1.50000e+03 1.5000e+03 None 1.445e+04 -0.000e+00
ROW 6 LL 2.50000e+02 2.5000e+02 3.0000e+02 1.458e+04 -0.000e+00
ROW 7 BS -2.98869e+06 None None -1.000e+00 -2.989e+06

Exit after 9 iterations.

Optimal QP solution found.

Final QP objective value = -1.8477847e+06

Perturb the problem and re-solve with warm start.

Parameters to e04nkc
--------------------

Problem type............ sparse QP Number of variables..... 7
Linear constraints...... 8 Hessian columns......... 7

prob_name...............
obj_name................ rhs_name................
range_name.............. bnd_name................
crnames................. supplied

minimize................ Nag_TRUE start................... Nag_Warm
ftol.................... 1.00e-06 reset_ftol.............. 10000
fcheck.................. 60 factor_freq............. 100
scale.............. Nag_ExtraScale scale_tol............... 9.00e-01
optim_tol............... 1.00e-06 max_iter................ 75
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crash.............. Nag_CrashTwice crash_tol............... 1.00e-01
partial_price........... 10 pivot_tol............... 2.05e-11
max_sb.................. 7
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
lu_factor_tol........... 1.00e+02 lu_update_tol........... 1.00e+01
lu_sing_tol............. 2.05e-11 machine precision....... 1.11e-16
print_level............. Nag_Soln
outfile................. stdout

Memory allocation:
state................... Nag lambda.................. Nag

Variable State Value Lower Bound Upper Bound Lagr Mult Residual
COLUMN 1 LL 0.00000e+00 0.0000e+00 2.0000e+02 2.360e+03 0.000e+00
COLUMN 2 SBS 3.49529e+02 0.0000e+00 2.5000e+03 -1.769e-12 3.495e+02
COLUMN 3 BS 6.48762e+02 4.0000e+02 8.0000e+02 -7.644e-13 1.512e+02
COLUMN 4 SBS 1.72618e+02 1.0000e+02 7.0000e+02 -1.624e-12 7.262e+01
COLUMN 5 BS 4.07596e+02 0.0000e+00 1.5000e+03 -3.446e-13 4.076e+02
COLUMN 6 BS 2.71446e+02 0.0000e+00 None -5.964e-13 2.714e+02
COLUMN 7 BS 1.50048e+02 0.0000e+00 None 7.850e-13 1.500e+02

Constrnt State Value Lower Bound Upper Bound Lagr Mult Residual
OBJECTIV EQ 2.00000e+03 2.0000e+03 2.0000e+03 -1.290e+04 -0.000e+00
ROW 1 BS 4.92290e+01 None 6.0000e+01 0.000e+00 -1.077e+01
ROW 2 UL 1.00000e+02 None 1.0000e+02 -2.325e+03 0.000e+00
ROW 3 BS 3.20731e+01 None 4.0000e+01 0.000e+00 -7.927e+00
ROW 4 BS 1.45618e+01 None 3.0000e+01 0.000e+00 -1.544e+01
ROW 5 LL 1.50000e+03 1.5000e+03 None 1.446e+04 -0.000e+00
ROW 6 LL 2.50000e+02 2.5000e+02 3.0000e+02 1.458e+04 -0.000e+00
ROW 7 BS -2.98841e+06 None None -1.000e+00 -2.988e+06

Exit after 1 iterations.

Optimal QP solution found.

Final QP objective value = -1.8466439e+06

11 Further Description

This section gives a detailed description of the algorithm used in nag_opt_sparse_convex_qp (e04nkc).
This, and possibly the next section, Section 12, may be omitted if the more sophisticated features of the
algorithm and software are not currently of interest.

11.1 Overview

nag_opt_sparse_convex_qp (e04nkc) is based on an inertia-controlling method that maintains a
Cholesky factorization of the reduced Hessian (see below). The method is similar to that of Gill and
Murray (1978), and is described in detail by Gill et al. (1991). Here we briefly summarise the main
features of the method. Where possible, explicit reference is made to the names of variables that are
arguments of the function or appear in the printed output.

The method used has two distinct phases: finding an initial feasible point by minimizing the sum of
infeasibilities (the feasibility phase), and minimizing the quadratic objective function within the feasible
region (the optimality phase). The computations in both phases are performed by the same code. The
two-phase nature of the algorithm is reflected by changing the function being minimized from the sum
of infeasibilities (the quantity Sinf described in Section 5.1) to the quadratic objective function (the
quantity Objective, see Section 5.1).

In general, an iterative process is required to solve a quadratic program. Given an iterate x; sð Þ in both
the original variables x and the slack variables s, a new iterate �x; �sð Þ is defined by

�x
�s

� �
¼ x

s

� �
þ �p; ð2Þ

where the step length � is a non-negative scalar (the printed quantity Step, see Section 5.1), and p is
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called the search direction. (For simplicity, we shall consider a typical iteration and avoid reference to
the index of the iteration.) Once an iterate is feasible (i.e., satisfies the constraints), all subsequent
iterates remain feasible.

11.2 Definition of the Working Set and Search Direction

At each iterate x; sð Þ, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the value of the optional parameter options:ftol; see
Section 12.2). The working set is the current prediction of the constraints that hold with equality at a
solution of the LP or QP problem. Let mW denote the number of constraints in the working set
(including bounds), and let W denote the associated mW by nþmð Þ working set matrix consisting of
the mW gradients of the working set constraints.

The search direction is defined so that constraints in the working set remain unaltered for any value of
the step length. It follows that p must satisfy the identity

Wp ¼ 0: ð3Þ
This characterisation allows p to be computed using any n by nZ full-rank matrix Z that spans the null
space of W . (Thus, nZ ¼ n�mW and WZ ¼ 0.) The null space matrix Z is defined from a sparse LU
factorization of part of W (see (6) and (7) below). The direction p will satisfy (3) if

p ¼ ZpZ; ð4Þ
where pZ is any nZ-vector.

The working set contains the constraints Ax� s ¼ 0 and a subset of the upper and lower bounds on the
variables x; sð Þ. Since the gradient of a bound constraint xj � lj or xj � uj is a vector of all zeros
except for 	1 in position j, it follows that the working set matrix contains the rows of A �I

� �
and

the unit rows associated with the upper and lower bounds in the working set.

The working set matrix W can be represented in terms of a certain column partition of the matrix
A �I

� �
. As in Section 3 we partition the constraints Ax� s ¼ 0 so that

BxB þ SxS þNxN ¼ 0; ð5Þ
where B is a square nonsingular basis and xB, xS and xN are the basic, superbasic and nonbasic
variables respectively. The nonbasic variables are equal to their upper or lower bounds at x; sð Þ, and the
superbasic variables are independent variables that are chosen to improve the value of the current
objective function. The number of superbasic variables is nS (the quantity Ns in the detailed printed
output; see Section 12.3). Given values of xN and xS , the basic variables xB are adjusted so that x; sð Þ
satisfies (5).

If P is a permutation matrix such that A �I
� �

P ¼ B S N
� �

, then the working set matrix W
satisfies

WP ¼ B S N
0 0 IN

� �
; ð6Þ

where IN is the identity matrix with the same number of columns as N .

The null space matrix Z is defined from a sparse LU factorization of part of W . In particular, Z is
maintained in ‘reduced gradient’ form, using the LUSOL package (see Gill et al. (1987)) to maintain
sparse LU factors of the basis matrix B that alters as the working set W changes. Given the
permutation P , the null space basis is given by

Z ¼ P
�B�1S

I
0

0
@

1
A: ð7Þ

This matrix is used only as an operator, i.e., it is never computed explicitly. Products of the form Zv
and ZTg are obtained by solving with B or BT. This choice of Z implies that nZ , the number of
‘degrees of freedom’ at x; sð Þ, is the same as nS , the number of superbasic variables.
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Let gZ and HZ denote the reduced gradient and reduced Hessian of the objective function:

gZ ¼ ZTg and HZ ¼ ZTHZ; ð8Þ
where g is the objective gradient at x; sð Þ. Roughly speaking, gZ and HZ describe the first and second
derivatives of an nS-dimensional unconstrained problem for the calculation of pZ . (The condition
estimator of HZ is the quantity Cond Hz in the detailed printed output; see Section 12.3.)

At each iteration, an upper triangular factor R is available such that HZ ¼ RTR. Normally, R is
computed from RTR ¼ ZTHZ at the start of the optimality phase and then updated as the QP working
set changes. For efficiency, the dimension of R should not be excessive (say, nS � 1000). This is
guaranteed if the number of nonlinear variables is ‘moderate’.

If the QP problem contains linear variables, H is positive semidefinite and R may be singular with at
least one zero diagonal element. However, an inertia-controlling strategy is used to ensure that only the
last diagonal element of R can be zero. (See Gill et al. (1991) for a discussion of a similar strategy for
indefinite quadratic programming.)

If the initial R is singular, enough variables are fixed at their current value to give a nonsingular R. This
is equivalent to including temporary bound constraints in the working set. Thereafter, R can become
singular only when a constraint is deleted from the working set (in which case no further constraints are
deleted until R becomes nonsingular).

11.3 The Main Iteration

If the reduced gradient is zero, x; sð Þ is a constrained stationary point on the working set. During the
feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero
elsewhere in the presence of constraint dependencies). During the optimality phase, a zero reduced
gradient implies that x minimizes the quadratic objective function when the constraints in the working
set are treated as equalities. At a constrained stationary point, Lagrange multipliers � are defined from
the equations

WT� ¼ g xð Þ: ð9Þ
A Lagrange multiplier �j corresponding to an inequality constraint in the working set is said to be
optimal if �j � � when the associated constraint is at its upper bound, or if �j � �� when the
associated constraint is at its lower bound, where � depends on the value of the optional parameter
options:optim tol (see Section 12.2). If a multiplier is non-optimal, the objective function (either the
true objective or the sum of infeasibilities) can be reduced by continuing the minimization with the
corresponding constraint excluded from the working set. (This step is sometimes referred to as
‘deleting’ a constraint from the working set.) If optimal multipliers occur during the feasibility phase
but the sum of infeasibilities is nonzero, there is no feasible point and the function terminates
immediately with fail:code ¼ NW NOT FEASIBLE (see Section 6).

The special form (6) of the working set allows the multiplier vector �, the solution of (9), to be written
in terms of the vector

d ¼ g
0

� �
� A �I
� �T

� ¼ g�AT�
�

� �
; ð10Þ

where � satisfies the equations BT� ¼ gB, and gB denotes the basic elements of g. The elements of �
are the Lagrange multipliers �j associated with the equality constraints Ax� s ¼ 0. The vector dN of
nonbasic elements of d consists of the Lagrange multipliers �j associated with the upper and lower
bound constraints in the working set. The vector dS of superbasic elements of d is the reduced gradient
gZ in (8). The vector dB of basic elements of d is zero, by construction. (The Euclidean norm of dS and
the final values of dS , g and � are the quantities Norm rg, Reduced Gradnt, Obj Gradient and Dual
Activity in the detailed printed output; see Section 12.3.)

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the search direction
is given by p ¼ ZpZ (see (7) and (11)). The step length is chosen to maintain feasibility with respect to
the satisfied constraints.
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There are two possible choices for pZ, depending on whether or not HZ is singular. If HZ is
nonsingular, R is nonsingular and pZ in (4) is computed from the equations

RTRpZ ¼ �gZ; ð11Þ
where gZ is the reduced gradient at x. In this case, x; sð Þ þ p is the minimizer of the objective function
subject to the working set constraints being treated as equalities. If x; sð Þ þ p is feasible, � is defined to
be unity. In this case, the reduced gradient at �x; �sð Þ will be zero, and Lagrange multipliers are computed
at the next iteration. Otherwise, � is set to �M, the step to the ‘nearest’ constraint along p. This
constraint is added to the working set at the next iteration.

If HZ is singular, then R must also be singular, and an inertia-controlling strategy is used to ensure that
only the last diagonal element of R is zero. (See Gill et al. (1991) for a discussion of a similar strategy
for indefinite quadratic programming.) In this case, pZ satisfies

pTZHZpZ ¼ 0 and gTZpZ � 0; ð12Þ
which allows the objective function to be reduced by any step of the form x; sð Þ þ �p, where � > 0.
The vector p ¼ ZpZ is a direction of unbounded descent for the QP problem in the sense that the QP
objective is linear and decreases without bound along p. If no finite step of the form x; sð Þ þ �p (where
� > 0) reaches a constraint not in the working set, the QP problem is unbounded and the function
terminates immediately with fail:code ¼ NE UNBOUNDED (see Section 6). Otherwise, � is defined as
the maximum feasible step along p and a constraint active at x; sð Þ þ �p is added to the working set for
the next iteration.

11.4 Miscellaneous

If the basis matrix is not chosen carefully, the condition of the null space matrix Z in (7) could be
arbitrarily high. To guard against this, the function implements a ‘basis repair’ feature in which the
LUSOL package (see Gill et al. (1987)) is used to compute the rectangular factorization

B S
� �T ¼ LU; ð13Þ

returning just the permutation P that makes PLPT unit lower triangular. The pivot tolerance is set to
require PLPTj jij � 2, and the permutation is used to define P in (6). It can be shown that Zk k is likely
to be little more than unity. Hence, Z should be well conditioned regardless of the condition of W . This
feature is applied at the beginning of the optimality phase if a potential B� S ordering is known.

The EXPAND procedure (see Gill et al. (1989)) is used to reduce the possibility of cycling at a point
where the active constraints are nearly linearly dependent. Although there is no absolute guarantee that
cycling will not occur, the probability of cycling is extremely small (see Hall and McKinnon (1996)).
The main feature of EXPAND is that the feasibility tolerance is increased at the start of every iteration.
This allows a positive step to be taken at every iteration, perhaps at the expense of violating the bounds
on x; sð Þ by a small amount.

Suppose that the value of the optional parameter options:ftol (see Section 12.2) is �. Over a period of
K iterations (where K is the value of the optional parameter options:reset ftol; see Section 12.2), the
feasibility tolerance actually used by nag_opt_sparse_convex_qp (e04nkc) (i.e., the working feasibility
tolerance) increases from 0:5� to � (in steps of 0:5�=K).

At certain stages the following ‘resetting procedure’ is used to remove small constraint infeasibilities.
First, all nonbasic variables are moved exactly onto their bounds. A count is kept of the number of non-
trivial adjustments made. If the count is nonzero, the basic variables are recomputed. Finally, the
working feasibility tolerance is reinitialized to 0:5�.

If a problem requires more than K iterations, the resetting procedure is invoked and a new cycle of
iterations is started. (The decision to resume the feasibility phase or optimality phase is based on
comparing any constraint infeasibilities with �.)

The resetting procedure is also invoked when nag_opt_sparse_convex_qp (e04nkc) reaches an
apparently optimal, infeasible or unbounded solution, unless this situation has already occurred twice. If
any non-trivial adjustments are made, iterations are continued.
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The EXPAND procedure not only allows a positive step to be taken at every iteration, but also provides
a potential choice of constraints to be added to the working set. All constraints at a distance � (where
� � �M) along p from the current point are then viewed as acceptable candidates for inclusion in the
working set. The constraint whose normal makes the largest angle with the search direction is added to
the working set. This strategy helps keep the basis matrix B well conditioned.

12 Optional Parameters

A number of optional input and output arguments to nag_opt_sparse_convex_qp (e04nkc) are available
through the structure argument options, type Nag_E04_Opt. An argument may be selected by assigning
an appropriate value to the relevant structure member; those arguments not selected will be assigned
default values. If no use is to be made of any of the optional parameters you should use the NAG
defined null pointer, E04_DEFAULT, in place of options when calling nag_opt_sparse_convex_qp
(e04nkc); the default settings will then be used for all arguments.

Before assigning values to options directly the structure must be initialized by a call to the function
nag_opt_init (e04xxc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xyc) in which
case initialization of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, then this must
be done directly in the calling program; they cannot be assigned using nag_opt_read (e04xyc).

12.1 Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for
nag_opt_sparse_convex_qp (e04nkc) together with their default values where relevant. The number �
is a generic notation for machine precision (see nag_machine_precision (X02AJC)).

Nag_Start start Nag Cold

Boolean list Nag_TRUE

Nag_PrintType print_level Nag_Soln_Iter

char outfile[80] stdout

void (*print_fun)() NULL

char prob_name[9] 'n0'
char obj_name[9] 'n0'
char rhs_name[9] 'n0'
char range_name[9] 'n0'
char bnd_name[9] 'n0'
char **crnames NULL

Boolean minimize Nag_TRUE

Integer max_iter max 50; 5 nþmð Þð Þ
Nag_CrashType crash Nag CrashTwice

double crash_tol 0.1

Nag_ScaleType scale Nag ExtraScale

double scale_tol 0.9

double optim_tol max 10�6;
ffiffi
�

p� �
double ftol max 10�6;

ffiffi
�

p� �
Integer reset_ftol 10000
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Integer fcheck 60

Integer factor_freq 100

Integer partial_price 10

double pivot_tol �0:67

double lu_factor_tol 100.0

double lu_update_tol 10.0

double lu_sing_tol �0:67

Integer max_sb min ncolhþ 1nð Þ
double inf_bound 1020

double inf_step max options:inf bound; 1020
� �

Integer *state size nþm

double *lambda size nþm

Integer nsb

Integer iter

Integer nf

12.2 Description of the Optional Parameters

start – Nag_Start Default ¼ Nag Cold

On entry: specifies how the initial working set is to be chosen.

options:start ¼ Nag Cold
An internal Crash procedure will be used to choose an initial basis matrix, B.

options:start ¼ Nag Warm
You must provide a valid definition of every array element of the optional parameter
options:state (see below), probably obtained from a previous call of nag_opt_sparse_convex_qp
(e04nkc), while, for QP problems, the optional parameter options:nsb (see below) must retain its
value from a previous call.

Constraint: options:start ¼ Nag Cold or Nag Warm.

list – Nag_Boolean Default ¼ Nag TRUE

On entry: if options:list ¼ Nag TRUE the argument settings in the call to nag_opt_sparse_convex_qp
(e04nkc) will be printed.

print level – Nag_PrintType Default ¼ Nag Soln Iter

On entry: the level of results printout produced by nag_opt_sparse_convex_qp (e04nkc). The following
values are available:

Nag NoPrint No output.

Nag Soln The final solution.

Nag Iter One line of output for each iteration.

Nag Iter Long A longer line of output for each iteration with more information (line exceeds
80 characters).

Nag Soln Iter The final solution and one line of output for each iteration.

Nag Soln Iter Long The final solution and one long line of output for each iteration (line exceeds
80 characters).
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Nag Soln Iter Full As Nag Soln Iter Long with the matrix statistics (initial status of rows and
columns, number of elements, density, biggest and smallest elements, etc.),
f a c t o r s r e s u l t i n g f r o m t h e s c a l i n g p r o c e d u r e ( i f
options:scale ¼ Nag RowColScale or Nag ExtraScale; see below), basis
factorization statistics and details of the initial basis resulting from the Crash
procedure (if options:start ¼ Nag Cold).

Details of each level of results printout are described in Section 12.3.

Constraint: options:print level ¼ Nag NoPrint, Nag Soln, Nag Iter, Nag Soln Iter, Nag Iter Long,
Nag Soln Iter Long or Nag Soln Iter Full.

outfile – const char[80] Default ¼ stdout

On entry: the name of the file to which results should be printed. If options:outfile½0� ¼ n0 then the
stdout stream is used.

print fun – pointer to function Default ¼ NULL

On entry: printing function defined by you; the prototype of options:print fun is

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 12.3.1 below for further details.

prob name – const char Default: options:prob name½0� ¼ n0
obj name – const char Default: options:obj name½0� ¼ n0
rhs name – const char Default: options:rhs name½0� ¼ n0
range name – const char Default: options:range name½0� ¼ n0
bnd name – const char Default: options:bnd name½0� ¼ n0
On entry: these options contain the names associated with the so-called MPSX form of the problem.
The arguments contain, respectively, the names of: the problem; the objective (or free) row; the
constraint right-hand side; the ranges, and the bounds. They are used in the detailed output when
optional parameter options:print level ¼ Nag Soln Iter Full.

crnames – char ** Default ¼ NULL

On entry: if options:crnames is not NULL then it must point to an array of nþm character strings
with maximum string length 8, containing the names of the columns and rows (i.e., variables and
constraints) of the problem. Thus, options:crnames½j � 1� contains the name of the jth column
(variable), for j ¼ 1; 2; . . . ;n, and options:crnames½nþ i � 1� contains the names of the ith row
(constraint), for i ¼ 1; 2; . . . ;m. If supplied, the names are used in the solution output (see Section 5.1
and Section 12.3).

minimize – Nag_Boolean Default ¼ Nag TRUE

On entry: options:minimize specifies the required direction of optimization. It applies to both linear
and nonlinear terms (if any) in the objective function. Note that if two problems are the same except
that one minimizes f xð Þ and the other maximizes �f xð Þ, their solutions will be the same but the signs
of the dual variables �i and the reduced gradients dj (see Section 11.3) will be reversed.

max iter – Integer Default ¼ max 50; 5 nþmð Þð Þ
On entry: options:max iter specifies the maximum number of iterations allowed before termination.

If you wish to check that a call to nag_opt_sparse_convex_qp (e04nkc) is correct before attempting to
solve the problem in full then options:max iter may be set to 0. No iterations will then be performed
but all initialization prior to the first iteration will be done and a listing of argument settings will be
output, if optional parameter options:list ¼ Nag TRUE (the default setting).

Constraint: options:max iter � 0.
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crash – Nag_CrashType Default ¼ Nag CrashTwice

This option does not apply when optional parameter options:start ¼ Nag Warm.

On entry: if options:start ¼ Nag Cold, and internal Crash procedure is used to select an initial basis
from various rows and columns of the constraint matrix A �I

� �
. The value of options:crash

determines which rows and columns are initially eligible for the basis, and how many times the Crash
procedure is called.

If options:crash ¼ Nag NoCrash, the all-slack basis B ¼ �I is chosen.

options:crash ¼ Nag CrashOnce
The Crash procedure is called once (looking for a triangular basis in all rows and columns of the
linear constraint matrix A).

options:crash ¼ Nag CrashTwice
The Crash procedure is called twice (looking at any equality constraints first followed by any
inequality constraints).

If options:crash ¼ Nag CrashOnce or Nag CrashTwice, certain slacks on inequality rows are selected
for the basis first. (If options:crash ¼ Nag CrashTwice, numerical values are used to exclude slacks
that are close to a bound.) The Crash procedure then makes several passes through the columns of A,
searching for a basis matrix that is essentially triangular. A column is assigned to ‘pivot’ on a particular
row if the column contains a suitably large element in a row that has not yet been assigned. (The pivot
elements ultimately form the diagonals of the triangular basis.) For remaining unassigned rows, slack
variables are inserted to complete the basis.

Constraint: options:crash ¼ Nag NoCrash, Nag CrashOnce or Nag CrashTwice.

crash tol – double Default ¼ 0:1

On entry: options:crash tol allows the Crash procedure to ignore certain ‘small’ nonzero elements in
the constraint matrix A while searching for a triangular basis. For each column of A, if amax is the
largest element in the column, other nonzeros in that column are ignored if they are less than (or equal
to) amax � options:crash tol.

When options:crash tol > 0, the basis obtained by the Crash procedure may not be strictly triangular,
but it is likely to be nonsingular and almost triangular. The intention is to obtain a starting basis with
more column variables and fewer (arbitrary) slacks. A feasible solution may be reached earlier for some
problems.

Constraint: 0:0 � options:crash tol < 1:0.

scale – Nag_ScaleType Default ¼ Nag ExtraScale

On entry: this option enables the scaling of the variables and constraints using an iterative procedure
due to Fourer (1982), which attempts to compute row scales ri and column scales cj such that the
scaled matrix coefficients �aij ¼ aij � cj=ri

� �
are as close as possible to unity. This may improve the

overall efficiency of the function on some problems. (The lower and upper bounds on the variables and
slacks for the scaled problem are redefined as �lj ¼ lj=cj and �uj ¼ uj=cj respectively, where cj 
 rj�n if
j > n.)

options:scale ¼ Nag NoScale
No scaling is performed.

options:scale ¼ Nag RowColScale
All rows and columns of the constraint matrix A are scaled.

options:scale ¼ Nag ExtraScale
An additional scaling is performed that may be helpful when the solution x is large; it takes into
account columns of A �I

� �
that are fixed or have positive lower bounds or negative upper

bounds.

Constraint: options:scale ¼ Nag NoScale, Nag RowColScale or Nag ExtraScale.
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scale tol – double Default ¼ 0:9

This option does not apply when optional parameter options:scale ¼ Nag NoScale.

On entry: options:scale tol is used to control the number of scaling passes to be made through the
constraint matrix A. At least 3 (and at most 10) passes will be made. More precisely, let ap denote the
largest column ratio (i.e., ('biggest' element)/('smallest' element) in some sense) after the pth scaling
pass through A. The scaling procedure is terminated if ap � ap�1 � options:scale tol for some p � 3.
Thus, increasing the value of options:scale tol from 0.9 to 0.99 (say) will probably increase the number
of passes through A.

Constraint: 0:0 < options:scale tol < 1:0.

optim tol – double Default ¼ max 10�6;
ffiffi
�

p� �
On entry: options:optim tol is used to judge the size of the reduced gradients dj ¼ gj � �Taj. By
definition, the reduced gradients for basic variables are always zero. Optimality is declared if the
reduced gradients for any nonbasic variables at their lower or upper bounds satisfy
�options:optim tol�max 1; �j jð Þ � dj � options:optim tol�max 1; �j jð Þ, a n d i f
dj
		 		 � options:optim tol�max 1; �j jð Þ for any superbasic variables.

Constraint: options:optim tol � �.

ftol – double Default ¼ max 10�6;
ffiffi
�

p� �
On entry: options:ftol defines the maximum acceptable absolute violation in each constraint at a
‘feasible’ point (including slack variables). For example, if the variables and the coefficients in the
linear constraints are of order unity, and the latter are correct to about 6 decimal digits, it would be
appropriate to specify options:ftol as 10�6.

nag_opt_sparse_convex_qp (e04nkc) attempts to find a feasible solution before optimizing the objective
function. If the sum of infeasibilities cannot be reduced to zero, the problem is assumed to be
infeasible. Let Sinf be the corresponding sum of infeasibilities. If Sinf is quite small, it may be
appropriate to raise options:ftol by a factor of 10 or 100. Otherwise, some error in the data should be
suspected. Note that nag_opt_sparse_convex_qp (e04nkc) does not attempt to find the minimum value
of Sinf.

If the constraints and variables have been scaled (see optional parameter options:scale above), then
feasibility is defined in terms if the scaled problem (since it is more likely to be meaningful).

Constraint: options:ftol � �.

reset ftol – Integer Default ¼ 5

On entry: this option is part of an anti-cycling procedure designed to guarantee progress even on highly
degenerate problems (see Section 11.4).

For LP problems, the strategy is to force a positive step at every iteration, at the expense of violating
the constraints by a small amount. Suppose that the value of the optional parameter options:ftol is �.
Over a period of options:reset ftol iterations, the feasibility tolerance actually used by
nag_opt_sparse_convex_qp (e04nkc) (i.e., the working feasibility tolerance) increases from 0:5� to �
(in steps of 0:5�=options:reset ftol).

For QP problems, the same procedure is used for iterations in which there is only one superbasic
variable. (Cycling can only occur when the current solution is at a vertex of the feasible region.) Thus,
zero steps are allowed if there is more than one superbasic variable, but otherwise positive steps are
enforced.

Increasing the value of options:reset ftol helps reduce the number of slightly infeasible nonbasic basic
variables (most of which are eliminated during the resetting procedure). However, it also diminishes the
freedom to choose a large pivot element (see options:pivot tol below).

Constraint: 0 < options:reset ftol < 10000000.
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fcheck – Integer Default ¼ 60

On entry: every options:fcheckth iteration after the most recent basis factorization, a numerical test is
made to see if the current solution x; sð Þ satisfies the linear constraints Ax� s ¼ 0. If the largest
element of the residual vector r ¼ Ax� s is judged to be too large, the current basis is refactorized and
the basic variables recomputed to satisfy the constraints more accurately.

Constraint: options:fcheck � 1.

factor freq – Integer Default ¼ 100

On entry: at most options:factor freq basis changes will occur between factorizations of the basis
matrix. For LP problems, the basis factors are usually updated at every iteration. For QP problems,
fewer basis updates will occur as the solution is approached. The number of iterations between basis
factorizations will therefore increase. During these iterations a test is made regularly according to the
value of optional parameter options:fcheck to ensure that the linear constraints Ax� s ¼ 0 are
satisfied. If necessary, the basis will be refactorized before the limit of options:factor freq updates is
reached.

Constraint: options:factor freq � 1.

partial price – Integer Default ¼ 10

This option does not apply to QP problems.

On entry: this option is recommended for large FP or LP problems that have significantly more
variables than constraints (i.e., n � m). It reduces the work required for each pricing operation (i.e.,
when a nonbasic variable is selected to enter the basis). If options:partial price ¼ 1, all columns of the
constraint matrix A �I

� �
are searched. If options:partial price > 1, A and �I are partitioned to

give options:partial price roughly equal segments Aj ; Kj , for j ¼ 1; 2; . . . ; p (modulo p). If the
previous pricing search was successful on Aj�1; Kj�1, the next search begins on the segments Aj;Kj. If
a reduced gradient is found that is larger than some dynamic tolerance, the variable with the largest
such reduced gradient (of appropriate sign) is selected to enter the basis. If nothing is found, the search
continues on the next segments Ajþ1; Kjþ1, and so on.

Constraint: options:partial price � 1.

pivot tol – double Default ¼ �0:67

On entry: options:pivot tol is used to prevent columns entering the basis if they would cause the basis
to become almost singular.

Constraint: options:pivot tol > 0:0.

lu factor tol – double Default ¼ 100:0
lu update tol – double Default ¼ 10:0

On entry: options:lu factor tol and options:lu update tol affect the stability and sparsity of the basis
factorization B ¼ LU , during refactorization and updates respectively. The lower triangular matrix L is
a product of matrices of the form

1
	 1

� �

where the multipliers 	 will satisfy 	j j < options:lu factor tol during refactorization or
	j j < options:lu update tol during update. The default values of options:lu factor tol and
options:lu update tol usually strike a good compromise between stability and sparsity. For large and
relatively dense problems, setting options:lu factor tol and options:lu update tol to 25 (say) may give
a marked improvement in sparsity without impairing stability to a serious degree. Note that for band
matrices it may be necessary to set options:lu factor tol in the range 1 � options:lu factor tol < 2 in
order to achieve stability.
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Constraints:

options:lu factor tol � 1:0;
options:lu update tol � 1:0.

lu sing tol – double Default ¼ �0:67

On entry: options:lu sing tol defines the singularity tolerance used to guard against ill conditioned basis
matrices. Whenever the basis is refactorized, the diagonal elements of U are tested as follows. If
ujj
		 		 � options:lu sing tol or ujj

		 		 < options:lu sing tol�max
i

uij

		 		, the jth column of the basis is

replaced by the corresponding slack variable.

Constraint: options:lu sing tol > 0:0.

max sb – Integer Default ¼ min ncolhþ 1;nð Þ
This option does not apply to FP or LP problems.

On entry: options:max sb places an upper bound on the number of variables which may enter the set of
superbasic variables (see Section 11.2). If the number of superbasics exceeds this bound then
nag_opt_sparse_convex_qp (e04nkc) will terminate with fail:code ¼ NE HESS TOO BIG. In effect,
options:max sb specifies ‘how nonlinear’ the QP problem is expected to be.

Constraint: options:max sb > 0.

inf bound – double Default ¼ 1020

On entry: options:inf bound defines the ‘infinite’ bound in the definition of the problem constraints.
Any upper bound greater than or equal to options:inf bound will be regarded as þ1 (and similarly
any lower bound less than or equal to �options:inf bound will be regarded as �1).

Constraint: options:inf bound > 0:0.

inf step – double Default ¼ max options:inf bound; 1020
� �

On entry: options:inf step specifies the magnitude of the change in variables that will be considered a
step to an unbounded solution. (Note that an unbounded solution can occur only when the Hessian is
not positive definite.) If the change in x during an iteration would exceed the value of options:inf step,
the objective function is considered to be unbounded below in the feasible region.

Constraint: options:inf step > 0:0.

state – Integer * Default memory ¼ nþm

On entry: options:state need not be set if the default option of options:start ¼ Nag Cold is used as
nþm values of memory will be automatically allocated by nag_opt_sparse_convex_qp (e04nkc).

If the option options:start ¼ Nag Warm has been chosen, options:state must point to a minimum of
nþm elements of memory. This memory will already be available if the options structure has been
used in a previous call to nag_opt_sparse_convex_qp (e04nkc) from the calling program, with
options:start ¼ Nag Cold and the same values of n and m. If a previous call has not been made you
must allocate sufficient memory.

If you supply a options:state vector and options:start ¼ Nag Cold, then the first n elements of
options:state must specify the initial states of the problem variables. (The slacks s need not be
initialized.) An internal Crash procedure is then used to select an initial basis matrix B. The initial basis
matrix will be triangular (neglecting certain small elements in each column). It is chosen from various
rows and columns of A �I

� �
. Possible values for options:state½j � 1�, for j ¼ 1; 2; . . . ; n, are:

options:state½j� State of xs½j� during Crash procedure

0 or 1 Eligible for the basis
2 Ignored
3 Eligible for the basis (given preference over 0 or 1)

4 or 5 Ignored
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If nothing special is known about the problem, or there is no wish to provide special information, you
may set options:state½j� ¼ 0 (and xs½j� ¼ 0:0), for j ¼ 0; 1; . . . ; n� 1. All variables will then be eligible
for the initial basis. Less trivially, to say that the jth variable will probably be equal to one of its
bounds, you should set options:state½j� ¼ 4 and xs½j� ¼ bl½j� or options:state½j� ¼ 5 and xs½j� ¼ bu½j� as
appropriate.

Following the Crash procedure, variables for which options:state½j� ¼ 2 are made superbasic. Other
variables not selected for the basis are then made nonbasic at the value xs½j� if bl½j� � xs½j� � bu½j�, or
at the value bl½j� or bu½j� closest to xs½j�.
When options:start ¼ Nag Warm, options:state and xs must specify the initial states and values,
respectively, of the variables and slacks x; sð Þ. If nag_opt_sparse_convex_qp (e04nkc) has been called
previously with the same values of n and m, options:state already contains satisfactory information.

Constraints:

0 � options:state½j� � 5 if options:start ¼ Nag Cold, for j ¼ 0; 1; . . . ; n� 1;
0 � options:state½j� � 3 if options:start ¼ Nag Warm, for j ¼ 0; 1; . . . ; nþm� 1.

On exit: the final states of the variables and slacks x; sð Þ. The significance of each possible value of
options:state is as follows:

options:state½j� State of variable j Normal value of xs½j�
0 Nonbasic bl½j�
1 Nonbasic bu½j�
2 Superbasic Between bl½j� and bu½j�
3 Basic Between bl½j� and bu½j�

If the problem is feasible (i.e., ninf ¼ 0), basic and superbasic variables may be outside their bounds by
as much as optional parameter options:ftol. Note that unless the optional parameter
options:scale ¼ Nag NoScale, options:ftol applies to the variables of the scaled problem. In this case,
the variables of the original problem may be as much as 0.1 outside their bounds, but this is unlikely
unless the problem is very badly scaled.

Very occasionally some nonbasic variables may be outside their bounds by as much as options:ftol, and
there may be some nonbasic variables for which xs½j� lies strictly between its bounds.

If the problem is infeasible (i.e., ninf > 0), some basic and superbasic variables may be outside their
bounds by an arbitrary amount (bounded by sinf if options:scale ¼ Nag NoScale).

lambda – double * Default memory ¼ nþm

On entry: nþm values of memory will be automatically allocated by nag_opt_sparse_convex_qp
(e04nkc) and this is the recommended method of use of options:lambda. However you may supply
memory from the calling program.

On exit: the values of the multipliers for each constraint with respect to the current working set. The
first n elements contain the multipliers (reduced costs) for the bound constraints on the variables, and
the next m elements contain the Lagrange multipliers (shadow prices) for the general linear constraints.

nsb – Integer

On entry: nS , the number of superbasics. For QP problems, options:nsb need not be specified if
optional parameter options:start ¼ Nag Cold, but must retain its value from a previous call when
options:start ¼ Nag Warm. For FP and LP problems, options:nsb is not referenced.

Constraint: options:nsb � 0.

On exit: the final number of superbasics. This will be zero for FP and LP problems.

iter – Integer

On exit: the total number of iterations performed.
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nf – Integer

On exit: the number of times the product Hx has been calculated (i.e., number of calls of qphx).

12.3 Description of Printed Output

The level of printed output can be controlled with the structure members options:list and
options:print level (see Section 12.2). If options:list ¼ Nag TRUE then the argument values to
nag_opt_sparse_convex_qp (e04nkc) are listed, whereas the printout of results is governed by the value
of options:print level. The default of options:print level ¼ Nag Soln Iter provides a single short line
of output at each iteration and the final result. This section describes all of the possible levels of results
printout available from nag_opt_sparse_convex_qp (e04nkc).

When options:print level ¼ Nag Iter or Nag Soln Iter the output produced at each iteration is as
desc r ibed in Sec t ion 5 .1 . I f options:print level ¼ Nag Iter Long, Nag Soln Iter Long or
Nag Soln Iter Full the following, more detailed, line of output is produced at every iteration. In all
cases, the values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

pp is the partial price indicator. The variable selected by the last pricing operation came
from the ppth partition of A and �I. Note that pp is reset to zero whenever the
basis is refactorized.

dj is the value of the reduced gradient (or reduced cost) for the variable selected by the
pricing operation at the start of the current iteration.

+S is the variable selected by the pricing operation to be added to the superbasic set.

-S is the variable chosen to leave the superbasic set.

-B is the variable removed from the basis (if any) to become nonbasic.

-B is the variable chosen to leave the set of basics (if any) in a special basic $
superbasic swap. The entry under -S has become basic if this entry is nonzero, and
nonbasic otherwise. The swap is done to ensure that there are no superbasic slacks.

Step is the value of the steplength � taken along the computed search direction p. The
variables x have been changed to xþ �p. If a variable is made superbasic during
the current iteration (i.e., +S is positive), Step will be the step to the nearest bound.
During the optimality phase, the step can be greater than unity only if the reduced
Hessian is not positive definite.

Pivot is the rth element of a vector y satisfying By ¼ aq whenever aq (the qth column of
the constraint matrix A �I

� �
) replaces the rth column of the basis matrix B.

Wherever possible, Step is chosen so as to avoid extremely small values of Pivot
(since they may cause the basis to be nearly singular). In extreme cases, it may be
necessary to increase the value of the optional parameter options:pivot tol (default
value ¼ �0:67, where � is the machine precision; see Section 12.2) to exclude very
small elements of y from consideration during the computation of Step.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Objective is the current value of the objective function. If x is not feasible, Sinf gives the
sum of magnitudes of constraint violations. If x is feasible, Objective is the value
of the objective function. The output line for the final iteration of the feasibility
phase (i.e., the first iteration for which Ninf is zero) will give the value of the true
objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities will
not increase until either a feasible point is found, or the optimality of the multipliers
implies that no feasible point exists.
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L is the number of nonzeros in the basis factor L. Immediately after a basis
factorization B ¼ LU , this is lenL, the number of subdiagonal elements in the
columns of a lower triangular matrix. Further nonzeros are added to L when various
columns of B are later replaced. (Thus, L increases monotonically.)

U is the number of nonzeros in the basis factor U. Immediately after a basis
factorization, this is lenU, the number of diagonal and superdiagonal elements in the
rows of an upper triangular matrix. As columns of B are replaced, the matrix U is
maintained explicitly (in sparse form). The value of U may fluctuate up or down; in
general, it will tend to increase.

Ncp is the number of compressions required to recover workspace in the data structure
for U. This includes the number of compressions needed during the previous basis
factorization. Normally, Ncp should increase very slowly. If it does not,
nag_opt_sparse_convex_qp (e04nkc) will attempt to expand the internal workspace
allocated for the basis factors.

Norm rg is dSk k, the Euclidean norm of the reduced gradient (see Section 11.3). During the
optimality phase, this norm will be approximately zero after a unit step. For FP and
LP problems, Norm rg is not printed.

Ns is the current number of superbasic variables. For FP and LP problems, Ns is not
printed.

Cond Hz is a lower bound on the condition number of the reduced Hessian (see Section 11.2).
The larger this number, the more difficult the problem. For FP and LP problems,
Cond Hz is not printed.

When options:print level ¼ Nag Soln Iter Full the following intermediate printout (< 120 characters)

is produced whenever the matrix B or BS ¼ B S
� �T

is factorized. Gaussian elimination is used to
compute an LU factorization of B or BS, where PLPT is a lower triangular matrix and PUQ is an
upper triangular matrix for some permutation matrices P and Q. The factorization is stabilized in the
manner described under the optional parameter options:lu factor tol (see Section 12.2).

Factorize is the factorization count.

Demand is a code giving the reason for the present factorization as follows:

Code Meaning

0 First LU factorization.
1 Number of updates reached the value of the optional parameter

options:factor freq (see Section 12.2).
2 Excessive nonzeros in updated factors.
7 Not enough storage to update factors.
10 Row residuals too large (see the description for the optional parameter

options:fcheck in Section 12.2).
11 Ill conditioning has caused inconsistent results.

Iteration is the iteration count.

Nonlinear is the number of nonlinear variables in B (not printed if BS is factorized).

Linear is the number of linear variables in B (not printed if BS is factorized).

Slacks is the number of slack variables in B (not printed if BS is factorized).

Elems is the number of nonzeros in B (not printed if BS is factorized).

Density is the percentage nonzero density of B (not printed if BS is factorized). More
precisely, Density ¼ 100� Elems= Nonlinearþ Linearþ Slacksð Þ2.

Compressns is the number of times the data structure holding the partially factorized matrix
needed to be compressed, in order to recover unused workspace.
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Merit is the average Markowitz merit count for the elements chosen to be the diagonals of
PUQ. Each merit count is defined to be c� 1ð Þ r� 1ð Þ, where c and r are the
number of nonzeros in the column and row containing the element at the time it is
selected to be the next diagonal. Merit is the average of m such quantities. It gives
an indication of how much work was required to preserve sparsity during the
factorization.

lenL is the number of nonzeros in L.

lenU is the number of nonzeros in U .

Increase is the percentage increase in the number of nonzeros in L and U relative to the
n u m b e r o f n o n z e r o s i n B. M o r e p r e c i s e l y ,
Increase ¼ 100� lenLþ lenU� Elemsð Þ=Elems.

m is the number of rows in the problem. Note that m ¼ Utþ Ltþ bp.

Ut is the number of triangular rows of B at the top of U .

d1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.3.

Lmax is the maximum subdiagonal element in the columns of L (not printed if BS is
factorized). This will not exceed the value of the optional parameter
options:lu factor tol.

Bmax is the maximum nonzero element in B (not printed if BS is factorized).

BSmax is the maximum nonzero element in BS (not printed if B is factorized).

Umax is the maximum nonzero element in U , excluding elements of B that remain in U
unchanged. (For example, if a slack variable is in the basis, the corresponding row
of B will become a row of U without modification. Elements in such rows will not
contribute to Umax. If the basis is strictly triangular, none of the elements of B will
contribute, and Umax will be zero.)

Ideally, Umax should not be significantly larger than Bmax. If it is several orders of
magnitude larger, it may be advisable to reset the optional parameter
options:lu factor tol to a value near 1.0. Umax is not printed if BS is factorized.

Umin is the magnitude of the smallest diagonal element of PUQ (not printed if BS is
factorized).

Growth is the value of the ratio Umax=Bmax, which should not be too large.

Providing Lmax is not large (say < 10:0), the ratio max Bmax; Umaxð Þ=Umin is an
estimate of the condition number of B. If this number is extremely large, the basis is
nearly singular and some numerical difficulties could occur in subsequent
computations. (However, an effort is made to avoid near singularity by using
slacks to replace columns of B that would have made Umin extremely small, and the
modified basis is refactorized.)

Growth is not printed if BS is factorized.

Lt is the number of triangular columns of B at the beginning of L.

bp is the size of the ‘bump’ or block to be factorized nontrivially after the triangular
rows and columns have been removed.

d2 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.6.

When options:print level ¼ Nag Soln Iter Full the following lines of intermediate printout (< 80
characters) are produced whenever options:start ¼ Nag Cold (see Section 12.2). They refer to the
number of columns selected by the Crash procedure during each of several passes through A, whilst
searching for a triangular basis matrix.
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Slacks is the number of slacks selected initially.

Free Cols is the number of free columns in the basis.

Preferred is the number of ‘preferred’ columns in the basis (i.e., options:state½j� ¼ 3 for some
j < n).

Unit is the number of unit columns in the basis.

Double is the number of double columns in the basis.

Triangle is the number of triangular columns in the basis.

Pad is the number of slacks used to pad the basis.

When options:print level ¼ Nag Soln Iter Full the following lines of intermediate printout (< 80
characters) are produced, following the final iteration. They refer to the ‘MPSX names’ stored in the
optional parameters options:prob name, options:obj name, options:rhs name, options:range name
and options:bnd name (see Section 12.2).

Name gives the name for the problem (blank if none).

Status gives the exit status for the problem (i.e., Optimal soln, Weak soln, Unbounded,
Infeasible, Excess itns, Error condn or Feasble soln) followed by details of
the direction of the optimization (i.e., (Min) or (Max)).

Objective gives the name of the free row for the problem (blank if none).

RHS gives the name of the constraint right-hand side for the problem (blank if none).

Ranges gives the name of the ranges for the problem (blank if none).

Bounds gives the name of the bounds for the problem (blank if none).

When options:print level ¼ Nag Soln or Nag Soln Iter the final solution printout for each column and
row is as described in Sect ion 5.1. When options:print level ¼ Nag Soln Iter Long or
Nag Soln Iter Full, the following longer lines of final printout (< 120 characters) are produced.

Let aj denote the jth column of A, for j ¼ 1; 2; . . . ; n. The following describes the printout for each
column (or variable).

Number is the column number j. (This is used internally to refer to xj in the intermediate
output.)

Column gives the name of xj.

State gives the state of xj (LL if nonbasic on its lower bound, UL if nonbasic on its upper
bound, EQ if nonbasic and fixed, FR if nonbasic and strictly between its bounds, BS
if basic and SBS if superbasic).

A key is sometimes printed before State to give some additional information about
t h e s t a t e o f xj. N o t e t h a t u n l e s s t h e o p t i o n a l p a r am e t e r
options:scale ¼ Nag NoScale (default value is options:scale ¼ Nag ExtraScale; see
Section 12.2) is specified, the tests for assigning a key are applied to the variables of
the scaled problem.

A Alternative optimum possible. xj is nonbasic, but its reduced gradient is
essentially zero. This means that if xj were allowed to start moving away
from its bound, there would be no change in the value of the objective
function. The values of the basic and superbasic variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them could encounter a bound immediately. In either case, the values of the
Lagrange multipliers might also change.

D Degenerate. xj is basic or superbasic, but it is equal to (or very close to) one
of its bounds.

e04nkc NAG Library Manual

e04nkc.36 Mark 26



I Infeasible. xj is basic or superbasic and is currently violating one of its
bounds by more than the value of the optional parameter options:ftol (default
value ¼ max 10�6;

ffiffi
�

p� �
, where � is the machine precision; see Section 12.2).

N Not precisely optimal. xj is nonbasic or superbasic. If the value of the
reduced gradient for xj exceeds the value of the optional parameter
options:optim tol (default value ¼ max 10�6;

ffiffi
�

p� �
; see Section 12.2), the

solution would not be declared optimal because the reduced gradient for xj

would not be considered negligible.

Activity is the value of xj at the final iterate.

Obj Gradient is the value of gj at the final iterate. For FP problems, gj is set to zero.

Lower Bound i s t h e l ow e r b o u n d s p e c i fi e d f o r xj. ( N o n e i n d i c a t e s t h a t
bl½j� 1� � �options:inf bound, where options:inf bound is the optional para-
meter.)

Upper Bound i s t h e u p p e r b o u n d s p e c ifi e d f o r xj. ( N o n e i n d i c a t e s t h a t
bu½j� 1� � options:inf bound.)

Reduced Gradnt is the value of dj at the final iterate (see Section 11.3). For FP problems, dj is set to
zero.

mþ j is the value of mþ j.

Let vi denote the ith row of A, for i ¼ 1; 2; . . . ;m. The following describes the printout for each row
(or constraint).

Number is the value of nþ i. (This is used internally to refer to si in the intermediate
output.)

Row gives the name of vi.

State gives the state of vi (LL if active on its lower bound, UL if active on its upper bound,
EQ if active and fixed, BS if inactive when si is basic and SBS if inactive when si is
superbasic).

A key is sometimes printed before State to give some additional information about
the state of si. Note that unless the optional parameter options:scale ¼ Nag NoScale
(default value is options:scale ¼ Nag ExtraScale; see Section 12.2) is specified, the
tests for assigning a key are applied to the variables of the scaled problem.

A Alternative optimum possible. si is nonbasic, but its reduced gradient is
essentially zero. This means that if si were allowed to start moving away
from its bound, there would be no change in the value of the objective
function. The values of the basic and superbasic variables might change,
giving a genuine alternative solution. However, if there are any degenerate
variables (labelled D), the actual change might prove to be zero, since one of
them could encounter a bound immediately. In either case, the values of the
dual variables (or Lagrange multipliers) might also change.

D Degenerate. si is basic or superbasic, but it is equal to (or very close to) one
of its bounds.

I Infeasible. si is basic or superbasic and is currently violating one of its
bounds by more than the value of the optional parameter options:ftol (default
value ¼ max 10�6;

ffiffi
�

p� �
, where � is the machine precision; see Section 12.2).

N Not precisely optimal. si is nonbasic or superbasic. If the value of the reduced
gradient for si exceeds the value of the optional parameter options:optim tol
(default value ¼ max 10�6;

ffiffi
�

p� �
; see Section 12.2), the solution would not be

declared optimal because the reduced gradient for si would not be considered
negligible.

Activity is the value of vi at the final iterate.
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Slack Activity is the value by which vi differs from its nearest bound. (For the free row (if any), it
is set to Activity.)

Lower Bound i s t h e l o w e r b o u n d s p e c i fi e d f o r vj. N o n e i n d i c a t e s t h a t
bl½nþ j� 1� � �options:inf bound, where options:inf bound is the optional
parameter.

Upper Bound i s t h e u p p e r b o u n d s p e c i fi e d f o r vj. N o n e i n d i c a t e s t h a t
bu½nþ j� 1� � options:inf bound.

Dual Activity is the value of the dual variable �i (the Lagrange multiplier for vi; see Section 11.3).
For FP problems, �i is set to zero.

i gives the index i of vi.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

If options:print level ¼ Nag NoPrint then printout will be suppressed; you can print the final solution
when nag_opt_sparse_convex_qp (e04nkc) returns to the calling program.

12.3.1Output of results via a user-defined printing function

You may also specify your own print function for output of iteration results and the final solution by
use of the options:print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

The rest of this section can be skipped if you wish to use the default printing facilities.

When a user-defined function is assigned to options:print fun this will be called in preference to the
internal print function of nag_opt_sparse_convex_qp (e04nkc). Calls to the user-defined function are
again controlled by means of the options:print level member. Information is provided through st and
comm, the two structure arguments to options:print fun.

If comm!it prt ¼ Nag TRUE then the results from the last iteration of nag_opt_sparse_convex_qp
(e04nkc) are provided through st . Note that options:print fun will be called with
comm!it prt ¼ Nag TRUE only if options:print level ¼ Nag Iter, Nag Iter Long, Nag Soln Iter,
Nag Soln Iter Long or Nag Soln Iter Full.

The following members of st are set:

iter – Integer

The iteration count.

qp – Nag_Boolean

Nag_TRUE if a QP problem is being solved; Nag_FALSE otherwise.

pprice – Integer

The partial price indicator.

rgval – double

The value of the reduced gradient (or reduced cost) for the variable selected by the pricing
operation at the start of the current iteration.

sb_add – Integer

The variable selected to enter the superbasic set.

sb_leave – double

The variable chosen to leave the superbasic set.

b_leave – Integer

The variable chosen to leave the basis (if any) to become nonbasic.
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bswap_leave – Integer

The variable chosen to leave the basis (if any) in a special basic $ superbasic swap.

step – double

The step length taken along the computed search direction.

pivot – double

The rth element of a vector y satisfying By ¼ aq whenever aq (the qth column of the constraint
matrix A �I

� �
) replaces the rth column of the basis matrix B.

ninf – Integer

The number of violated constraints or infeasibilities.

f – double

The current value of the objective function if st!ninf is zero; otherwise, the sum of the
magnitudes of constraint violations.

nnz_l – Integer

The number of nonzeros in the basis factor L.

nnz_u – Integer

The number of nonzeros in the basis factor U.

ncp – Integer

The number of compressions of the basis factorization workspace carried out so far.

norm_rg – double

The Euclidean norm of the reduced gradient at the start of the current iteration. This value is
meaningful only if st!qp ¼ Nag TRUE.

nsb – Integer

The number of superbasic variables. This value is meaningful only if st!qp ¼ Nag TRUE.

cond_hz – double

A lower bound on the condition number of the reduced Hessian. This value is meaningful only if
st!qp ¼ Nag TRUE.

If comm!sol prt ¼ Nag TRUE then the final results for one row or column are provided through st.
Note tha t options:print fun wil l be ca l l ed wi th comm!sol prt ¼ Nag TRUE only i f
options:print level ¼ Nag Soln, Nag Soln Iter, Nag Soln Iter Long or Nag Soln Iter Full. The follow-
ing members of st are set (note that options:print fun is called repeatedly, for each row and column):

m – Integer

The number of rows (or general constraints) in the problem.

n – Integer

The number of columns (or variables) in the problem.

col – Nag_Boolean

Nag_TRUE if column information is being provided; Nag_FALSE if row information is being
provided.

index – Integer

If st!col ¼ Nag TRUE then st!index is the index j (in the range 1 � j � n) of the current
column (variable) for which the remaining members of st, as described below, are set.

If st!col ¼ Nag FALSE then st!index is the index i (in the range 1 �i � m) of the current
row (constraint) for which the remaining members of st, as described below, are set.
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name – char *

The name of row i or column j.

sstate – char *

st!sstate is a character string describing the state of row i or column j. This may be "LL",
"UL", "EQ", "FR", "BS" or "SBS". The meaning of each of these is described in Section 12.3
(State).

key – char *

st!key is a character string which gives additional information about the current row or column.
The possible values of st!key are: " ", "A", "D", "I" or "N". The meaning of each of these is
described in Section 12.3 (State).

val – double

The activity of row i or column j at the final iterate.

blo – double

The lower bound on row i or column j.

bup – double

The upper bound on row i or column j.

lmult – double

The value of the Lagrange multiplier associated with the current row or column (i.e., the dual
activity �i for a row, or the reduced gradient dj for a column) at the final iterate.

objg – double

The value of the objective gradient gj at the final iterate. st!objg is meaningful only when
st!col ¼ Nag TRUE and should not be accessed otherwise. It is set to zero for FP problems.

The relevant members of the structure comm are:

it_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the result of the current iteration.

sol_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the final result.

user – double
iuser – Integer
p – Pointer

Pointers for communication of user information. If used they must be allocated memory either
before entry to nag_opt_sparse_convex_qp (e04nkc) or during a call to qphess or
options:print fun. The type Pointer will be void * with a C compiler that defines void *
and char * otherwise.
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