
NAG Library Function Document

nag_opt_qp (e04nfc)

1 Purpose

nag_opt_qp (e04nfc) solves general quadratic programming problems. It is not intended for large sparse
problems.

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_qp (Integer n, Integer nclin, const double a[], Integer tda,
const double bl[], const double bu[], const double cvec[],
const double h[], Integer tdh,

void (*qphess)(Integer n, Integer jthcol, const double h[], Integer tdh,
const double x[], double hx[], Nag_Comm *comm),

double x[], double *objf, Nag_E04_Opt *options, Nag_Comm *comm,
NagError *fail)

3 Description

nag_opt_qp (e04nfc) is designed to solve a class of quadratic programming problems stated in the
following general form:

minimize
x2Rn

f xð Þ subject to l � x
Ax

� �
� u;

where A is an mlin by n matrix and f xð Þ may be specified in a variety of ways depending upon the
particular problem to be solved. The available forms for f xð Þ are listed in Table 1 below, in which the
prefixes FP, LP and QP stand for ‘feasible point’, ‘linear programming’ and ‘quadratic programming’
respectively and c is an n element vector.

Problem Type f xð Þ Matrix H
FP Not applicable Not applicable
LP cTx Not applicable
QP1 1

2x
THx symmetric

QP2 cTxþ 1
2x

THx symmetric
QP3 1

2x
THTHx m by n upper trapezoidal

QP4 cTxþ 1
2x

THTHx m by n upper trapezoidal

Table 1

For problems of type FP a feasible point with respect to a set of linear inequality constraints is sought.
The default problem type is QP2, other objective functions are selected by using the optional parameter
options:prob.

The constraints involving A are called the general constraints. Note that upper and lower bounds are
specified for all the variables and for all the general constraints. An equality constraint can be specified
by setting li ¼ ui. If certain bounds are not present, the associated elements of l or u can be set to
special values that will be treated as �1 or þ1. (See the description of the optional parameter
options:inf bound.)

The defining feature of a quadratic function f xð Þ is that the second-derivative matrix r2f xð Þ (the
Hessian matrix) is constant. For the LP case, r2f xð Þ ¼ 0; for QP1 and QP2, r2f xð Þ ¼ H; and for QP3
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and QP4, r2f xð Þ ¼ HTH. If H is defined as the zero matrix, nag_opt_qp (e04nfc) will solve the
resulting linear programming problem; however, this can be accomplished more efficiently by setting
the optional parameter options:prob ¼ Nag LP, or by using nag_opt_lp (e04mfc).

You must supply an initial estimate of the solution.

In the QP case, you may supply H either explicitly as an m by n matrix, or implicitly in a C function
that computes the product Hx for any given vector x. An example of such a function is included in
Section 10. There is no restriction on H apart from symmetry. In general, a successful run of
nag_opt_qp (e04nfc) will indicate one of three situations: (i) a minimizer has been found; (ii) the
algorithm has terminated at a so-called dead-point; or (iii) the problem has no bounded solution. If a
minimizer is found, and H is positive definite or positive semidefinite, nag_opt_qp (e04nfc) will obtain
a global minimizer; otherwise, the solution will be a local minimizer (which may or may not be a global
minimizer). A dead-point is a point at which the necessary conditions for optimality are satisfied but the
sufficient conditions are not. At such a point, a feasible direction of decrease may or may not exist, so
that the point is not necessarily a local solution of the problem. Verification of optimality in such
instances requires further information, and is in general an NP-hard problem (see Pardalos and
Schnitger (1988)). Termination at a dead-point can occur only if H is not positive definite. If H is
positive semidefinite, the dead-point will be a weak minimizer (i.e., with a unique optimal objective
value, but an infinite set of optimal x).

Details about the algorithm are described in Section 11, but it is not necessary to read this more
advanced section before using nag_opt_qp (e04nfc).
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5 Arguments

1: n – Integer Input

On entry: n, the number of variables.

Constraint: n > 0.

2: nclin – Integer Input

On entry: mlin, the number of general linear constraints.

Constraint: nclin � 0.

3: a½nclin� tda� – const double Input

Note: the i; jð Þth element of the matrix A is stored in a½ i� 1ð Þ � tdaþ j� 1�.
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On entry: the ith row of a must contain the coefficients of the ith general linear constraint (the
ith row of A), for i ¼ 1; 2; . . . ;mlin. If nclin ¼ 0, the array a is not referenced.

4: tda – Integer Input

On entry: the stride separating matrix column elements in the array a.

Constraint: if nclin > 0, tda � n

5: bl½nþ nclin� – const double Input
6: bu½nþ nclin� – const double Input

On entry: bl must contain the lower bounds and bu the upper bounds, for all the constraints in
the following order. The first n elements of each array must contain the bounds on the variables,
and the next mlin elements the bounds for the general linear constraints (if any). To specify a
nonexistent lower bound (i.e., lj ¼ �1), set bl½j� � �options:inf bound, and to specify a
nonexistent upper bound (i.e., uj ¼ þ1), set bu½j� � options:inf bound; options:inf bound is
the optional parameter, whose default value is 1020. To specify the jth constraint as an equality,
set bl½j� ¼ bu½j� ¼ �, say, where �j j < options:inf bound.

Constraints:

bl½j� � bu½j�, for j ¼ 0; 1; . . . ; nþ nclin� 1;
if bl½j� ¼ bu½j� ¼ �, �j j < options:inf bound.

7: cvec½n� – const double Input

On entry: the coefficients of the explicit linear term of the objective function when the problem is
of type options:prob ¼ Nag LP, Nag QP2 or Nag QP4. The default problem type is
options:prob ¼ Nag QP2 corresponding to QP2 described in Section 3; other problem types
can be specified using the optional parameter options:prob.

If the problem is of type options:prob ¼ Nag FP, Nag QP1 or Nag QP3, cvec is not referenced
and therefore a NULL pointer may be given.

8: h½n� tdh� – const double Input

On entry: h may be used to store the quadratic term H of the QP objective function if desired.
The elements of h are accessed only by the function qphess; thus h is not accessed if the
problem is of type options:prob ¼ Nag FP or Nag LP. The number of rows of H is denoted by
m, its default value is equal to n. (The optional parameter options:hrows may be used to specify
a value of m < n.)

If the problem is of type options:prob ¼ Nag QP1 or Nag QP2, the first m rows and columns of
h must contain the leading m by m rows and columns of the symmetric Hessian matrix. Only the
diagonal and upper triangular elements of the leading m rows and columns of h are referenced.
The remaining elements need not be assigned.

For problems options:prob ¼ Nag QP3 or Nag QP4, the first m rows of h must contain an m by
n upper trapezoidal factor of the Hessian matrix. The factor need not be of full rank, i.e., some of
the diagonals may be zero. However, as a general rule, the larger the dimension of the leading
nonsingular sub-matrix of H, the fewer iterations will be required. Elements outside the upper
trapezoidal part of the first m rows of H are assumed to be zero and need not be assigned.

In some cases, you need not use h to store H explicitly (see the specification of function qphess).

9: tdh – Integer Input

On entry: the stride separating matrix column elements in the array h.

Constraint: tdh � n or at least the value of the optional parameter options:hrows if it is set.
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10: qphess – function, supplied by the user External Function

In general, you need not provide a version of qphess, because a ‘default’ function is included in
the NAG C Library. If the default function is required then the NAG defined null void function
pointer, NULLFN, should be supplied in the call to nag_opt_qp (e04nfc). The algorithm of
nag_opt_qp (e04nfc) requires only the product of H and a vector x; and in some cases you may
obtain increased efficiency by providing a version of qphess that avoids the need to define the
elements of the matrix H explicitly.

qphess is not referenced if the problem is of type options:prob ¼ Nag FP or Nag LP, in which
case qphess should be replaced by NULLFN.

The specification of qphess is:

void qphess (Integer n, Integer jthcol, const double h[], Integer tdh,
const double x[], double hx[], Nag_Comm *comm)

1: n – Integer Input

On entry: n, the number of variables.

2: jthcol – Integer Input

On entry: jthcol specifies whether or not the vector x is a column of the identity matrix.

jthcol ¼ j > 0
The vector x is the jth column of the identity matrix, and hence Hx is the jth
column of H, which can sometimes be computed very efficiently and qphess
may be coded to take advantage of this. However special code is not necessary
because x is always stored explicitly in the array x.

jthcol ¼ 0
x has no special form.

3: h½n� tdh� – const double Input

On entry: the matrix H of the QP objective function. The matrix element Hij is stored
in h½ i � 1ð Þ � tdhþ j � 1�, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n. In some situations, it
may be desirable to compute Hx without accessing h – for example, if H is sparse or
has special structure. (This is illustrated in the function qphess1 in Section 10.) The
arguments h and tdh may then refer to any convenient array.

4: tdh – Integer Input

On entry: the stride separating matrix column elements in the array h.

5: x½n� – const double Input

On entry: the vector x.

6: hx½n� – double Output

On exit: the product Hx.

7: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to qphess.

flag – Integer Input/Output

On entry: comm!flag contains a non-negative number.

On exit: if qphess resets comm!flag to some negative number nag_opt_qp
(e04nfc) will terminate immediately with the error indicator NE_USER_STOP. If
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fail is supplied to nag_opt_qp (e04nfc), fail:errnum will be set to your setting of
comm!flag.

first – Nag_Boolean Input

On entry: will be set to Nag_TRUE on the first call to qphess and Nag_FALSE
for all subsequent calls.

nf – Integer Input

On entry: the number of calls made to qphess including the current one.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void * and char
* otherwise. Before calling nag_opt_qp (e04nfc) you may allocate memory to
these pointers and they may be initialized with various quantities for use by
qphess when called from nag_opt_qp (e04nfc).

Note: qphess should be tested separately before being used in conjunction with nag_opt_qp
(e04nfc). The input arrays h and x must not be changed within qphess.

11: x½n� – double Input/Output

On entry: an initial estimate of the solution.

On exit: the point at which nag_opt_qp (e04nfc) terminated. If fail:code ¼ NE NOERROR,
NW_DEAD_POINT, NW_SOLN_NOT_UNIQUE or NW_NOT_FEASIBLE, x contains an
estimate of the solution.

12: objf – double * Output

On exit: the value of the objective function at x if x is feasible, or the sum of infeasibilities at x
otherwise. If the problem is of type options:prob ¼ Nag FP and x is feasible, objf is set to zero.

13: options – Nag_E04_Opt * Input/Output

On entry/exit: a pointer to a structure of type Nag_E04_Opt whose members are optional
parameters for nag_opt_qp (e04nfc). These structure members offer the means of adjusting some
of the argument values of the algorithm and on output will supply further details of the results. A
description of the members of options is given in Section 12. Some of the results returned in
options can be used by nag_opt_qp (e04nfc) to perform a ‘warm start’ if it is re-entered (see the
optional argument options:start).

If any of these optional parameters are required then the structure options should be declared and
initialized by a call to nag_opt_init (e04xxc) and supplied as an argument to nag_opt_qp
(e04nfc). However, if the optional parameters are not required the NAG defined null pointer,
E04_DEFAULT, can be used in the function call.

14: comm – Nag_Comm * Input/Output

Note: comm is a NAG defined type (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

On entry/exit: structure containing pointers for user communication with user-supplied functions;
see the description of qphess for details. If you do not need to make use of this communication
feature the null pointer NAGCOMM_NULL may be used in the call to nag_opt_qp (e04nfc); comm
will then be declared internally for use in calls to user-supplied functions.

15: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).
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5.1 Description of Printed Output

Intermediate and final results are printed out by default. You can control the level of printed output with
the structure member options:print level. The default, options:print level ¼ Nag Soln Iter provides a
single line of output at each iteration and the final result. This section describes the default printout
produced by nag_opt_qp (e04nfc).

The convention for numbering the constraints in the iteration results is that indices 1 to n refer to the
bounds on the variables, and indices nþ 1 to nþmlin refer to the general constraints. When the status
of a constraint changes, the index of the constraint is printed, along with the designation L (lower
bound), U (upper bound), E (equality), F (temporarily fixed variable) or A (artificial constraint).

The single line of intermediate results output on completion of each iteration gives:

Itn is the iteration count.

Jdel is the index of the constraint deleted from the working set. If Jdel is zero, no
constraint was deleted.

Jadd is the index of the constraint added to the working set. If Jadd is zero, no constraint
was added.

Step is the step taken along the computed search direction. If a constraint is added during
the current iteration (i.e., Jadd is positive), Step will be the step to the nearest
constraint. During the optimality phase, the step can be greater than 1:0 only if the
reduced Hessian is not positive definite.

Ninf is the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Obj is the value of the current objective function. If x is not feasible, Sinf gives a weighted
sum of the magnitudes of constraint violations. If x is feasible, Obj is the value of the
objective function. The output line for the final iteration of the feasibility phase (i.e.,
the first iteration for which Ninf is zero) will give the value of the true objective at the
first feasible point.

During the optimality phase, the value of the objective function will be non-increasing.
During the feasibility phase, the number of constraint infeasibilities will not increase
until either a feasible point is found, or the optimality of the multipliers implies that no
feasible point exists. Once optimal multipliers are obtained, the number of
infeasibilities can increase, but the sum of infeasibilities will either remain constant
or be reduced until the minimum sum of infeasibilities is found.

Bnd the number of simple bound constraints in the current working set.

Lin the number of general linear constraints in the current working set.

Nart the number of artificial constraints in the working set. At the start of the optimality
phase, Nart provides an estimate of the number of non-positive eigenvalues in the
reduced Hessian.

Nrz the dimension of the subspace in which the objective function is currently being
minimized. The value of Nrz is the number of variables minus the number of
constraints in the working set; i.e., Nrz ¼ n� Bndþ Linþ Nartð Þ.

Norm Gz the Euclidean norm of the reduced gradient. During the optimality phase, this norm will
be approximately zero after a unit step.

The printout of the final result consists of:

Varbl the name (V) and index j, for j ¼ 1; 2; . . . ; n of the variable.

State the state of the variable (FR if neither bound is in the working set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily fixed at
its current value). If Value lies outside the upper or lower bounds by more than the
feasibility tolerance, State will be ++ or -- respectively.

Value the value of the variable at the final iteration.
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Lower bound t he lower bound spec ified for the var iab le . (None ind ica tes tha t
bl½j� 1� � �options:inf bound.)

Upper bound t he uppe r bound spec ified for the var iab le . (None ind ica tes tha t
bu½j� 1� � options:inf bound.)

Lagr mult the value of the Lagrange multiplier for the associated bound constraint. This will be
zero if State is FR. If x is optimal, the multiplier should be non-negative if State is
LL, and non-positive if State is UL.

Residual the difference between the variable Value and the nearer of its bounds bl½j� 1� and
bu½j� 1�.

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, and with the following change in the heading:

LCon the name (L) and index j, for j ¼ 1; 2; . . . ;mlin of the constraint.

6 Error Indicators and Warnings

If one of NE_USER_STOP, NE_2_INT_ARG_LT, NE_OPT_NOT_INIT, NE_BAD_PARAM, NE_IN-
VALID_INT_RANGE_1, NE_INVALID_INT_RANGE_2, NE_INVALID_REAL_RANGE_FF, NE_IN-
VALID_REAL_RANGE_F, NE_CVEC_NULL, NE_H_NULL, NE_WARM_START, NE_BOUND,
NE_BOUND_LCON, NE_STATE_VAL and NE_ALLOC_FAIL occurs, no values will have been
assigned to objf, or to options:ax and options:lambda. x and options:state will be unchanged.

NE_2_INT_ARG_LT

On entry, tda ¼ valueh i while n ¼ valueh i. These arguments must satisfy tda � n.

On entry, tdh ¼ valueh i while n ¼ valueh i. These arguments must satisfy tdh � n.

On entry, tdh ¼ valueh i while options:hrows ¼ valueh i. These arguments must satisfy
tdh � options:hrows.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument options:print level had an illegal value.

On entry, argument options:prob had an illegal value.

On entry, argument options:start had an illegal value.

NE_BOUND

The lower bound for variable valueh i (array element bl½ valueh i�) is greater than the upper bound.

NE_BOUND_LCON

The lower bound for linear constraint valueh i (array element bl½ valueh i�) is greater than the upper
bound.

NE_CVEC_NULL

options:prob ¼ valueh i but argument cvec ¼ NULL.

NE_H_NULL

options:prob ¼ valueh i, qphess is NULL but argument h is also NULL. If the default function
for qphess is to be used for this problem then an array must be supplied in argument h.
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NE_HESS_TOO_BIG

Reduced Hessian exceeds assigned dimension. options:max df ¼ valueh i.
The algorithm needed to expand the reduced Hessian when it was already at its maximum
dimension, as specified by the optional parameter options:max df.
The value of the argument options:max df is too small. Rerun nag_opt_qp (e04nfc) with a larger
value (possibly using the options:start ¼ Nag Warm facility to specify the initial working set).

NE_INT_ARG_LT

On entry, n ¼ valueh i.
Constraint: n � 1.

On entry, nclin ¼ valueh i.
Constraint: nclin � 0.

NE_INVALID_INT_RANGE_1

Value valueh i given to options:fcheck not valid. Correct range is options:fcheck � 1.

Value valueh i given to options:fmax iter not valid. Correct range is options:fmax iter � 0.

Value valueh i given to options:hrows not valid. Correct range is n � options:hrows � 0.

Value valueh i given to options:max df not valid. Correct range is n � options:max df � 1.

Value valueh i given to options:max iter not valid. Correct range is options:max iter � 0.

NE_INVALID_INT_RANGE_2

Va l u e valueh i g i v e n t o options:reset ftol n o t v a l i d . C o r r e c t r a n g e i s
0 < options:reset ftol < 10000000.

NE_INVALID_REAL_RANGE_F

Value valueh i given to options:ftol not valid. Correct range is options:ftol > 0:0.

Value valueh i given to options:inf bound not valid. Correct range is options:inf bound > 0:0.

Value valueh i given to options:inf step not valid. Correct range is options:inf step > 0:0.

NE_INVALID_REAL_RANGE_FF

Va l u e valueh i g i v e n t o options:crash tol n o t v a l i d . C o r r e c t r a n g e i s
0:0 � options:crash tol � 1:0.

Value valueh i given to options:rank tol not valid. Correct range is 0:0 � options:rank tol < 1:0.

NE_NOT_APPEND_FILE

Cannot open file stringh i for appending.

NE_NOT_CLOSE_FILE

Cannot close file stringh i.

NE_OPT_NOT_INIT

Options structure not initialized.

NE_STATE_VAL

options:state½ valueh i� is out of range. options:state½ valueh i� ¼ valueh i.
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NE_UNBOUNDED

Solution appears to be unbounded.
This value of fail implies that a step as large as options:inf step would have to be taken in order
to continue the algorithm. This situation can occur only when H is not positive definite and at
least one variable has no upper or lower bound.

NE_USER_STOP

User requested termination, user flag value ¼ valueh i.
This exit occurs if you set comm!flag to a negative value in qphess. If fail is supplied the
value of fail:errnum will be the same as your setting of comm!flag.

NE_WARM_START

options:start ¼ Nag Warm but pointer options:state ¼ NULL.

NE_WRITE_ERROR

Error occurred when writing to file stringh i.

NW_DEAD_POINT

Iterations terminated at a dead point (check the optimality conditions).
The necessary conditions for optimality have been satisfied but the sufficient conditions are not.
(The reduced gradient is negligible, the Lagrange multipliers are optimal, but Hr is singular or
there are some very small multipliers.) If H is not positive definite, x is not necessarily a local
solution of the problem and verification of optimality requires further information.

NW_NOT_FEASIBLE

No feasible point was found for the linear constraints.
It was not possible to satisfy all the constraints to within the feasibility tolerance. In this case, the
constraint violations at the final x will reveal a value of the tolerance for which a feasible point
will exist – for example, if the feasibility tolerance for each violated constraint exceeds its
Residual at the final point. You should check that there are no constraint redundancies. If the
data for the constraints are accurate only to the absolute precision �, you should ensure that the
value of the optional parameter options:ftol is greater than �. For example, if all elements of A
are of order unity and are accurate only to three decimal places, the optional parameter
options:ftol should be at least 10�3.

NW_OVERFLOW_WARN

Serious ill conditioning in the working set after adding constraint valueh i. Overflow may occur in
subsequent iterations.
If overflow occurs preceded by this warning then serious ill conditioning has probably occurred
in the working set when adding a constraint. It may be possible to avoid the difficulty by
increasing the magnitude of the optional parameter options:ftol and re-running the program. If
the message recurs even after this change, the offending linearly dependent constraint j must be
removed from the problem.

NW_SOLN_NOT_UNIQUE

Optimal solution is not unique.
The necessary conditions for optimality have been satisfied but the sufficient conditions are not.
(The reduced gradient is negligible, the Lagrange multipliers are optimal, but Hr is singular or
there are some very small multipliers.) If H is positive semidefinite, x gives the global minimum
value of the objective function, but the final x is not unique.
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NW_TOO_MANY_ITER

The maximum number of iterations, valueh i, have been performed.
The value of the optional parameter options:max iter may be too small. If the method appears to
be making progress (e.g., the objective function is being satisfactorily reduced), increase the
value of options:max iter and rerun nag_opt_qp (e04nfc) (possibly using the
options:start ¼ Nag Warm facility to specify the initial working set).

7 Accuracy

nag_opt_qp (e04nfc) implements a numerically stable active set strategy and returns solutions that are
as accurate as the condition of the problem warrants on the machine.

8 Parallelism and Performance

nag_opt_qp (e04nfc) is not threaded in any implementation.

9 Further Comments

Sensible scaling of the problem is likely to reduce the number of iterations required and make the
problem less sensitive to perturbations in the data, thus improving the condition of the problem. In the
absence of better information it is usually sensible to make the Euclidean lengths of each constraint of
comparable magnitude. See the e04 Chapter Introduction and Gill et al. (1986) for further information
and advice.

10 Example

To minimize the quadratic function f xð Þ ¼ cTxþ 1
2x

THx , where

c ¼ �0:02;�0:2;�0:2;�0:2;�0:2; 0:04; 0:04ð ÞT

H ¼

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 2 0 0 0
0 0 2 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 �2 �2
0 0 0 0 0 �2 �2

0
BBBBBBB@

1
CCCCCCCA

subject to the bounds

�0:01 � x1 � 0:01
�0:10 � x2 � 0:15
�0:01 � x3 � 0:03
�0:04 � x4 � 0:02
�0:10 � x5 � 0:05
�0:01 � x6
�0:01 � x7

and the general constraints

x1þ x2þ x3þ x4þ x5þ x6þ x7 ¼ �0:13
0:15x1þ 0:04x2þ 0:02x3þ 0:04x4þ 0:02x5þ 0:01x6þ 0:03x7 � �0:0049
0:03x1þ 0:05x2þ 0:08x3þ 0:02x4þ 0:06x5þ 0:01x6 � �0:0064
0:02x1þ 0:04x2þ 0:01x3þ 0:02x4þ 0:02x5 � �0:0037
0:02x1þ 0:03x2 þ 0:01x5 � �0:0012

�0:0992 � 0:70x1þ 0:75x2þ 0:80x3þ 0:75x4þ 0:80x5þ 0:97x6 � �0:0020
�0:003 � 0:02x1þ 0:06x2þ 0:08x3þ 0:12x4þ 0:02x5þ 0:01x6þ 0:97x7 � 0:002

The initial point, which is infeasible, is
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x0 ¼ �0:01;�0:03; 0:0;�0:01;�0:1; 0:02; 0:01ð ÞT:
The computed solution (to five figures) is

x� ¼ �0:01;�0:069865; 0:018259;�0:024261;�0:062006; 0:0138054; 0:0040665ð ÞT:
One bound constraint and four general constraints are active at the solution.

This example shows the use of certain optional parameters. Option values are assigned directly within
the program text and by reading values from a data file. The options structure is declared and initialized
by nag_opt_init (e04xxc). Values are then assigned directly to options:outfile and options:inf bound
and two further options are read from the data file by use of nag_opt_read (e04xyc). nag_opt_qp
(e04nfc) is then called to solve the problem using the function qphess1, with the Hessian implicit, for
argument qphess. On successful return two further options are set, selecting a warm start and a reduced
level of printout, and the problem is solved again using the function qphess2. In this case the Hessian
is defined explicitly. Finally the memory freeing function nag_opt_free (e04xzc) is used to free the
memory assigned to the pointers in the options structure. You must not use the standard C function
free() for this purpose.

10.1 Program Text

/* nag_opt_qp (e04nfc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*
*/

#include <nag.h>
#include <stdio.h>
#include <string.h>
#include <nag_stdlib.h>
#include <nag_string.h>
#include <nage04.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL qphess1(Integer n, Integer jthcol, const double h[],
Integer tdh, const double x[], double hx[],
Nag_Comm *comm);

static void NAG_CALL qphess2(Integer n, Integer jthcol, const double h[],
Integer tdh, const double x[], double hx[],
Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

#define A(I, J) a[(I) *tda + J]
#define H(I, J) h[(I) *tdh + J]

int main(void)
{

const char *optionsfile = "e04nfce.opt";
static double ruser[2] = { -1.0, -1.0 };
Nag_Boolean print;
Integer exit_status = 0, i, j, n, nbnd, nclin, tda, tdh;
Nag_E04_Opt options;
double *a = 0, *bl = 0, *bu = 0, *cvec = 0, *h = 0, objf, *x = 0;
Nag_Comm comm;
NagError fail;
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INIT_FAIL(fail);

printf("nag_opt_qp (e04nfc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

fflush(stdout);

#ifdef _WIN32
scanf_s(" %*[^\n]"); /* Skip heading in data file */

#else
scanf(" %*[^\n]"); /* Skip heading in data file */

#endif

/* Set the actual problem dimensions.
* n = the number of variables.
* nclin = the number of general linear constraints (may be 0).
*/

n = 7;
nclin = 7;
if (n > 0 && nclin >= 0) {

nbnd = n + nclin;
if (!(x = NAG_ALLOC(n, double)) ||

!(cvec = NAG_ALLOC(n, double)) ||
!(a = NAG_ALLOC(nclin * n, double)) ||
!(h = NAG_ALLOC(n * n, double)) ||
!(bl = NAG_ALLOC(nbnd, double)) || !(bu = NAG_ALLOC(nbnd, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
tda = n;
tdh = n;

}
else {

printf("Invalid n or nclin.\n");
exit_status = 1;
return exit_status;

}
/* cvec = the coefficients of the explicit linear term of f(x).
* a = the linear constraint matrix.
* bl = the lower bounds on x and A*x.
* bu = the upper bounds on x and A*x.
* x = the initial estimate of the solution.
*/

/* Read the coefficients of the explicit linear term of f(x). */
#ifdef _WIN32

scanf_s(" %*[^\n]"); /* Skip heading in data file */
#else

scanf(" %*[^\n]"); /* Skip heading in data file */
#endif

for (i = 0; i < n; ++i)
#ifdef _WIN32

scanf_s("%lf", &cvec[i]);
#else

scanf("%lf", &cvec[i]);
#endif

/* Read the linear constraint matrix A. */
#ifdef _WIN32

scanf_s(" %*[^\n]"); /* Skip heading in data file */
#else

scanf(" %*[^\n]"); /* Skip heading in data file */
#endif

for (i = 0; i < nclin; ++i)
for (j = 0; j < n; ++j)

#ifdef _WIN32
scanf_s("%lf", &A(i, j));
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#else
scanf("%lf", &A(i, j));

#endif

/* Read the bounds. */
nbnd = n + nclin;

#ifdef _WIN32
scanf_s(" %*[^\n]"); /* Skip heading in data file */

#else
scanf(" %*[^\n]"); /* Skip heading in data file */

#endif
for (i = 0; i < nbnd; ++i)

#ifdef _WIN32
scanf_s("%lf", &bl[i]);

#else
scanf("%lf", &bl[i]);

#endif
#ifdef _WIN32

scanf_s(" %*[^\n]"); /* Skip heading in data file */
#else

scanf(" %*[^\n]"); /* Skip heading in data file */
#endif

for (i = 0; i < nbnd; ++i)
#ifdef _WIN32

scanf_s("%lf", &bu[i]);
#else

scanf("%lf", &bu[i]);
#endif

/* Read the initial estimate of x. */
#ifdef _WIN32

scanf_s(" %*[^\n]"); /* Skip heading in data file */
#else

scanf(" %*[^\n]"); /* Skip heading in data file */
#endif

for (i = 0; i < n; ++i)
#ifdef _WIN32

scanf_s("%lf", &x[i]);
#else

scanf("%lf", &x[i]);
#endif

/* nag_opt_init (e04xxc).
* Initialization function for option setting
*/

nag_opt_init(&options); /* Initialize options structure */
/* Set one option directly
* Bounds >= inf_bound will be treated as plus infinity.
* Bounds <= -inf_bound will be treated as minus infinity.
*/

options.inf_bound = 1.0e21;

/* Read remaining option values from file */
print = Nag_TRUE;
/* nag_opt_read (e04xyc).
* Read options from a text file
*/

nag_opt_read("e04nfc", optionsfile, &options, print, "stdout", &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_opt_read (e04xyc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Solve the problem from a cold start.
* The Hessian is defined implicitly by function qphess1.
*/

/* nag_opt_qp (e04nfc), see above. */
nag_opt_qp(n, nclin, a, tda, bl, bu, cvec, (double *) 0, tdh,

qphess1, x, &objf, &options, &comm, &fail);
if (fail.code != NE_NOERROR) {
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printf("Error from nag_opt_qp (e04nfc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* The following is for illustrative purposes only. We do a warm
* start with the final working set of the previous run.
* This time we store the Hessian explicitly in h[][], and use
* the corresponding function qphess2().
* Only the final solution from the results is printed.
*/

printf("\nA run of the same example with a warm start:\n");
fflush(stdout);

options.start = Nag_Warm;
options.print_level = Nag_Soln;

for (i = 0; i < n; ++i) {
for (j = 0; j < n; ++j)

H(i, j) = 0.0;
if (i <= 4)

H(i, i) = 2.0;
else

H(i, i) = -2.0;
}
H(2, 3) = 2.0;
H(3, 2) = 2.0;
H(5, 6) = -2.0;
H(6, 5) = -2.0;

/* Solve the problem again. */
/* nag_opt_qp (e04nfc), see above. */
nag_opt_qp(n, nclin, a, tda, bl, bu, cvec, h, tdh,

qphess2, x, &objf, &options, &comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_opt_qp (e04nfc).\n%s\n", fail.message);
exit_status = 1;

}
/* Free memory allocated by nag_opt_qp (e04nfc) to pointers in options */
/* nag_opt_free (e04xzc).
* Memory freeing function for use with option setting
*/

nag_opt_free(&options, "all", &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_opt_free (e04xzc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

END:
NAG_FREE(x);
NAG_FREE(cvec);
NAG_FREE(a);
NAG_FREE(h);
NAG_FREE(bl);
NAG_FREE(bu);

return exit_status;
}

static void NAG_CALL qphess1(Integer n, Integer jthcol, const double h[],
Integer tdh, const double x[], double hx[],
Nag_Comm *comm)

{
/* In this version of qphess the Hessian matrix is implicit.
* The array h[] is not accessed. There is no special coding
* for the case jthcol > 0.
*/

if (comm->user[0] == -1.0) {
printf("(User-supplied callback qphess1, first invocation.)\n");
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fflush(stdout);
comm->user[0] = 0.0;

}

hx[0] = 2.0 * x[0];
hx[1] = 2.0 * x[1];
hx[2] = 2.0 * (x[2] + x[3]);
hx[3] = hx[2];
hx[4] = 2.0 * x[4];
hx[5] = -2.0 * (x[5] + x[6]);
hx[6] = hx[5];

} /* qphess1 */

#undef H

static void NAG_CALL qphess2(Integer n, Integer jthcol, const double h[],
Integer tdh, const double x[], double hx[],
Nag_Comm *comm)

{
/* In this version of qphess, the matrix H is stored in h[]
* as a full two-dimensional array.
*/

#define H(I, J) h[(I) *tdh + (J)]

Integer i, j;

if (comm->user[1] == -1.0) {
printf("(User-supplied callback qphess2, first invocation.)\n");
fflush(stdout);
comm->user[1] = 0.0;

}

if (jthcol != 0) {
/* Special case -- extract one column of H. */
j = jthcol - 1;
for (i = 0; i < n; ++i)

hx[i] = H(i, j);
}
else {

/* Normal Case. */
for (i = 0; i < n; ++i)

hx[i] = 0.0;

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)

hx[i] += H(i, j) * x[j];
}

} /* qphess2 */

10.2 Program Data

nag_opt_qp (e04nfc) Example Program Data
Linear term of f(x), c.
-0.02 -0.2 -0.2 -0.2 -0.2 0.04 0.04
Linear constraint matrix, A.
1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.15 0.04 0.02 0.04 0.02 0.01 0.03
0.03 0.05 0.08 0.02 0.06 0.01 0.0
0.02 0.04 0.01 0.02 0.02 0.0 0.0
0.02 0.03 0.0 0.0 0.01 0.0 0.0
0.70 0.75 0.80 0.75 0.80 0.97 0.0
0.02 0.06 0.08 0.12 0.02 0.01 0.97
Lower bounds
-0.01 -0.1 -0.01 -0.04 -0.1 -0.01 -0.01
-0.13 -1.0e21 -1.0e21 -1.0e21 -1.0e21 -0.0992 -0.003
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Upper bounds
0.01 0.15 0.03 0.02 0.05 1.0e21 1.0e21

-0.13 -0.0049 -0.0064 -0.0037 -0.0012 1.0e21 0.002
Initial estimate of x
-0.01 -0.03 0.0 -0.01 -0.1 0.02 0.01

nag_opt_qp (e04nfc) Example Program Optional Parameters

Following options for e04nfc are read by e04xyc.

begin e04nfc

fmax_iter = 30 /* Set maximum number of iterations in feasiblity phase */
max_iter = 50 /* Set maximum total number of iterations */

end

10.3 Program Results

nag_opt_qp (e04nfc) Example Program Results

Optional parameter setting for e04nfc.
--------------------------------------

Option file: e04nfce.opt

fmax_iter set to 30
max_iter set to 50

Parameters to e04nfc
--------------------

Linear constraints............ 7 Number of variables........... 7

prob.................... Nag_QP2 start................... Nag_Cold
ftol.................... 1.05e-08 reset_ftol.............. 5
rank_tol................ 1.11e-14 crash_tol............... 1.00e-02
fcheck.................. 50 max_df.................. 7
inf_bound............... 1.00e+21 inf_step................ 1.00e+21
fmax_iter............... 30 max_iter................ 50
hrows................... 7 machine precision....... 1.11e-16
optim_tol............... 1.72e-13 min_infeas.............. Nag_FALSE
print_level......... Nag_Soln_Iter
outfile................. stdout

Memory allocation:
state................... Nag
ax...................... Nag lambda.................. Nag

Results from e04nfc:
-------------------

Itn Jdel Jadd Step Ninf Sinf/Obj Bnd Lin Nart Nrz Norm Gz

0 0 0 0.0e+00 3 1.0380e-01 3 4 0 0 0.00e+00
1 9 U 13 L 4.1e-02 1 3.0000e-02 3 4 0 0 0.00e+00
2 12 U 4 L 4.2e-02 0 0.0000e+00 4 3 0 0 0.00e+00

(User-supplied callback qphess1, first invocation.)

Itn 2 -- Feasible point found.
2 0 0 0.0e+00 0 4.5800e-02 4 3 0 0 0.00e+00
3 5 L 14 L 1.3e-01 0 4.1616e-02 3 4 0 0 0.00e+00
4 11 U 0 1.0e+00 0 3.9362e-02 3 3 0 1 1.56e-17
5 3 L 10 U 4.1e-01 0 3.7589e-02 2 4 0 1 1.19e-02
6 0 0 1.0e+00 0 3.7554e-02 2 4 0 1 6.94e-18
7 4 L 0 1.0e+00 0 3.7032e-02 1 4 0 2 3.10e-17

Final solution:

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual
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V 1 LL -1.00000e-02 -1.0000e-02 1.0000e-02 4.700e-01 0.000e+00
V 2 FR -6.98646e-02 -1.0000e-01 1.5000e-01 0.000e+00 3.014e-02
V 3 FR 1.82592e-02 -1.0000e-02 3.0000e-02 0.000e+00 1.174e-02
V 4 FR -2.42608e-02 -4.0000e-02 2.0000e-02 0.000e+00 1.574e-02
V 5 FR -6.20056e-02 -1.0000e-01 5.0000e-02 0.000e+00 3.799e-02
V 6 FR 1.38054e-02 -1.0000e-02 None 0.000e+00 2.381e-02
V 7 FR 4.06650e-03 -1.0000e-02 None 0.000e+00 1.407e-02

LCon State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 EQ -1.30000e-01 -1.3000e-01 -1.3000e-01 -1.908e+00 2.776e-17
L 2 FR -5.87990e-03 None -4.9000e-03 0.000e+00 9.799e-04
L 3 UL -6.40000e-03 None -6.4000e-03 -3.144e-01 0.000e+00
L 4 FR -4.53732e-03 None -3.7000e-03 0.000e+00 8.373e-04
L 5 FR -2.91600e-03 None -1.2000e-03 0.000e+00 1.716e-03
L 6 LL -9.92000e-02 -9.9200e-02 None 1.955e+00 0.000e+00
L 7 LL -3.00000e-03 -3.0000e-03 2.0000e-03 1.972e+00 -1.301e-18

Exit after 7 iterations.

Optimal QP solution found.

Final QP objective value = 3.7031646e-02

A run of the same example with a warm start:

Parameters to e04nfc
--------------------

Linear constraints............ 7 Number of variables........... 7

prob.................... Nag_QP2 start................... Nag_Warm
ftol.................... 1.05e-08 reset_ftol.............. 5
rank_tol................ 1.11e-14 crash_tol............... 1.00e-02
fcheck.................. 50 max_df.................. 7
inf_bound............... 1.00e+21 inf_step................ 1.00e+21
fmax_iter............... 30 max_iter................ 50
hrows................... 7 machine precision....... 1.11e-16
optim_tol............... 1.72e-13 min_infeas.............. Nag_FALSE
print_level......... Nag_Soln
outfile................. stdout

Memory allocation:
state................... Nag
ax...................... Nag lambda.................. Nag
(User-supplied callback qphess2, first invocation.)

Final solution:

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 LL -1.00000e-02 -1.0000e-02 1.0000e-02 4.700e-01 0.000e+00
V 2 FR -6.98646e-02 -1.0000e-01 1.5000e-01 0.000e+00 3.014e-02
V 3 FR 1.82592e-02 -1.0000e-02 3.0000e-02 0.000e+00 1.174e-02
V 4 FR -2.42608e-02 -4.0000e-02 2.0000e-02 0.000e+00 1.574e-02
V 5 FR -6.20056e-02 -1.0000e-01 5.0000e-02 0.000e+00 3.799e-02
V 6 FR 1.38054e-02 -1.0000e-02 None 0.000e+00 2.381e-02
V 7 FR 4.06650e-03 -1.0000e-02 None 0.000e+00 1.407e-02

LCon State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 EQ -1.30000e-01 -1.3000e-01 -1.3000e-01 -1.908e+00 0.000e+00
L 2 FR -5.87990e-03 None -4.9000e-03 0.000e+00 9.799e-04
L 3 UL -6.40000e-03 None -6.4000e-03 -3.144e-01 1.735e-18
L 4 FR -4.53732e-03 None -3.7000e-03 0.000e+00 8.373e-04
L 5 FR -2.91600e-03 None -1.2000e-03 0.000e+00 1.716e-03
L 6 LL -9.92000e-02 -9.9200e-02 None 1.955e+00 1.388e-17
L 7 LL -3.00000e-03 -3.0000e-03 2.0000e-03 1.972e+00 -1.301e-18

Exit after 0 iterations.
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Optimal QP solution found.

Final QP objective value = 3.7031646e-02

11 Further Description

This section gives a detailed description of the algorithm used in nag_opt_qp (e04nfc). This, and
possibly the next section, Section 12, may be omitted if the more sophisticated features of the algorithm
and software are not currently of interest.

11.1 Overview

nag_opt_qp (e04nfc) is based on an inertia-controlling method that maintains a Cholesky factorization
of the reduced Hessian (see below). The method is based on that of Gill and Murray (1978) and is
described in detail by Gill et al. (1991). Here we briefly summarise the main features of the method.
Where possible, explicit reference is made to the names of variables that are arguments of nag_opt_qp
(e04nfc) or appear in the printed output. nag_opt_qp (e04nfc) has two phases: finding an initial feasible
point by minimizing the sum of infeasibilities (the feasibility phase), and minimizing the quadratic
objective function within the feasible region (the optimality phase). The computations in both phases
are performed by the same functions. The two-phase nature of the algorithm is reflected by changing
the function being minimized from the sum of infeasibilities to the quadratic objective function. The
feasibility phase does not perform the standard simplex method (i.e., it does not necessarily find a
vertex), except in the LP case when mlin � n. Once any iterate is feasible, all subsequent iterates
remain feasible.

nag_opt_qp (e04nfc) has been designed to be efficient when used to solve a sequence of related
problems – for example, within a sequential quadratic programming method for nonlinearly constrained
optimization. In particular, you may specify an initial working set (the indices of the constraints
believed to be satisfied exactly at the solution); see the discussion of the optional parameter
options:start.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we shall
always consider a typical iteration and avoid reference to the index of the iteration.) Each new iterate �x
is defined by

�x ¼ xþ �p; ð1Þ
where the steplength � is a non-negative scalar, and p is called the search direction.

At each point x, a working set of constraints is defined to be a linearly independent subset of the
constraints that are satisfied ‘exactly’ (to within the tolerance defined by the optional parameter
options:ftol). The working set is the current prediction of the constraints that hold with equality at a
solution of a linearly constrained QP problem. The search direction is constructed so that the constraints
in the working set remain unaltered for any value of the step length. For a bound constraint in the
working set, this property is achieved by setting the corresponding component of the search direction to
zero. Thus, the associated variable is fixed, and specification of the working set induces a partition of x
into fixed and free variables. During a given iteration, the fixed variables are effectively removed from
the problem; since the relevant components of the search direction are zero, the columns of A
corresponding to fixed variables may be ignored.

Let mw denote the number of general constraints in the working set and let nfx denote the number of
variables fixed at one of their bounds (mw and nfx are the quantities Lin and Bnd in the printed output
from nag_opt_qp (e04nfc)). Similarly, let nfr (nfr ¼ n� nfx) denote the number of free variables. At
every iteration, the variables are re-ordered so that the last nfx variables are fixed, with all other
relevant vectors and matrices ordered accordingly.
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11.2 Definition of the Search Direction

Let Afr denote the mw by nfr sub-matrix of general constraints in the working set corresponding to the
free variables, and let pfr denote the search direction with respect to the free variables only. The general
constraints in the working set will be unaltered by any move along p if

Afrpfr ¼ 0: ð2Þ
In order to compute pfr, the TQ factorization of Afr is used:

AfrQfr ¼ 0 T
� �

; ð3Þ
where T is a nonsingular mw by mw upper triangular matrix (i.e., tij ¼ 0 if i > j), and the nonsingular
nfr by nfr matrix Qfr is the product of orthogonal transformations (see Gill et al. (1984)). If the
columns of Qfr are partitioned so that

Qfr ¼ Z Y
� �

;

where Y is nfr �mw, then the nz (nz ¼ nfr �mw) columns of Z form a basis for the null space of Afr.
Let nr be an integer such that 0 � nr � nz, and let Zr denote a matrix whose nr columns are a subset of
the columns of Z. (The integer nr is the quantity Nrz in the printed output from nag_opt_qp (e04nfc).
In many cases, Zr will include all the columns of Z.) The direction pfr will satisfy (2) if

pfr ¼ Zrpr; ð4Þ
where pr is any nr-vector.

Let Q denote the n by n matrix

Q ¼ Qfr

Ifx

� �
;

where Ifx is the identity matrix of order nfx. Let Hq and gq denote the n by n transformed Hessian and
the transformed gradient

Hq ¼ QTHQ and gq ¼ QT cþHxð Þ
and let the matrix of first nr rows and columns of Hq be denoted by Hr and the vector of the first nr

elements of gq be denoted by gr. The quantities Hr and gr are known as the reduced Hessian and
reduced gradient of f xð Þ, respectively. Roughly speaking, gr and Hr describe the first and second
derivatives of an unconstrained problem for the calculation of pr.

At each iteration, a triangular factorization of Hr is available. If Hr is positive definite, Hr ¼ RTR,
where R is the upper triangular Cholesky factor of Hr. If Hr is not positive definite, Hr ¼ RTDR,
where D ¼ diag 1; 1; . . . ; 1; �ð Þ, with � � 0.

The computation is arranged so that the reduced gradient vector is a multiple of er, a vector of all zeros
except in the last (i.e., nrth) position. This allows the vector pr in (4) to be computed from a single
back-substitution

Rpr ¼ �er; ð5Þ
where � is a scalar that depends on whether or not the reduced Hessian is positive definite at x. In the
positive definite case, xþ p is the minimizer of the objective function subject to the constraints (bounds
and general) in the working set treated as equalities. If Hr is not positive definite, pr satisfies the
conditions

pTrHrpr < 0 and gTr pr � 0;

which allow the objective function to be reduced by any positive step of the form xþ �p.

11.3 The Main Iteration

If the reduced gradient is zero, x is a constrained stationary point in the subspace defined by Z. During
the feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero
at non-vertices in the presence of constraint dependencies). During the optimality phase, a zero reduced
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gradient implies that x minimizes the quadratic objective when the constraints in the working set are
treated as equalities. At a constrained stationary point, Lagrange multipliers �c and �b for the general
and bound constraints are defined from the equations

AT
fr�c ¼ gfr and �b ¼ gfx �AT

fx�c: ð6Þ
Given a positive constant � of the order of the machine precision, a Lagrange multiplier �j

corresponding to an inequality constraint in the working set is said to be optimal if �j � � when the
associated constraint is at its upper bound, or if �j � �� when the associated constraint is at its lower
bound. If a multiplier is non-optimal, the objective function (either the true objective or the sum of
infeasibilities) can be reduced by deleting the corresponding constraint (with index Jdel; see
Section 12.3) from the working set.

If optimal multipliers occur during the feasibility phase and the sum of infeasibilities is nonzero, there
is no feasible point, and you can force nag_opt_qp (e04nfc) to continue until the minimum value of the
sum of infeasibilities has been found (see the discussion of the optional parameter options:min infeas
in Section 12.2). At this point, the Lagrange multiplier �j corresponding to an inequality constraint in
the working set will be such that � 1þ �ð Þ � �j � � when the associated constraint is at its upper
bound, and �� � �j � 1þ � when the associated constraint is at its lower bound. Lagrange multipliers
for equality constraints will satisfy �j

�� �� � 1þ �.

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the nonzero
elements of the search direction p are given by Zrpr (see (5)). The choice of step length is influenced by
the need to maintain feasibility with respect to the satisfied constraints. If Hr is positive definite and
xþ p is feasible, � will be taken as unity. In this case, the reduced gradient at �x will be zero, and
Lagrange multipliers are computed. Otherwise, � is set to �m, the step to the ‘nearest’ constraint (with
index Jadd; see Section 12.3), which is added to the working set at the next iteration.

Each change in the working set leads to a simple change to Afr: if the status of a general constraint
changes, a row of Afr is altered; if a bound constraint enters or leaves the working set, a column of Afr

changes. Explicit representations are recurred of the matrices T , Qfr and R; and of vectors QTg, and
QTc. The triangular factor R associated with the reduced Hessian is only updated during the optimality
phase.

One of the most important features of nag_opt_qp (e04nfc) is its control of the conditioning of the
working set, whose nearness to linear dependence is estimated by the ratio of the largest to smallest
diagonal elements of the TQ factor T (the printed value Cond T; see Section 12.3). In constructing the
initial working set, constraints are excluded that would result in a large value of Cond T.

nag_opt_qp (e04nfc) includes a rigorous procedure that prevents the possibility of cycling at a point
where the active constraints are nearly linearly dependent (see Gill et al. (1989)). The main feature of
the anti-cycling procedure is that the feasibility tolerance is increased slightly at the start of every
iteration. This not only allows a positive step to be taken at every iteration, but also provides, whenever
possible, a choice of constraints to be added to the working set. Let �m denote the maximum step at
which xþ �mp does not violate any constraint by more than its feasibility tolerance. All constraints at a
distance � (� � �m) along p from the current point are then viewed as acceptable candidates for
inclusion in the working set. The constraint whose normal makes the largest angle with the search
direction is added to the working set.

11.4 Choosing the Initial Working Set

At the start of the optimality phase, a positive definite Hr can be defined if enough constraints are
included in the initial working set. (The matrix with no rows and columns is positive definite by
definition, corresponding to the case when Afr contains nfr constraints.) The idea is to include as many
general constraints as necessary to ensure that the reduced Hessian is positive definite.

Let Hz denote the matrix of the first nz rows and columns of the matrix Hq ¼ QTHQ at the beginning
of the optimality phase. A partial Cholesky factorization is used to find an upper triangular matrix R
that is the factor of the largest positive definite leading sub-matrix of Hz. The use of interchanges
during the factorization of Hz tends to maximize the dimension of R. (The condition of R may be
controlled using the optional parameter options:rank tol.) Let Zr denote the columns of Z
corresponding to R, and let Z be partitioned as Z ¼ ZrZað Þ. A working set, for which Zr defines
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the null space, can be obtained by including the rows of ZT
a as ‘artificial constraints’. Minimization of

the objective function then proceeds within the subspace defined by Zr, as described in Section 11.2.

The artificially augmented working set is given by

�Afr ¼ ZT
a

Afr

� �
; ð7Þ

so that pfr will satisfy Afrpfr ¼ 0 and ZT
a pfr ¼ 0. By definition of the TQ factorization, �Afr

automatically satisfies the following:

�AfrQfr ¼ ZT
a

Afr

� �
Qfr ¼ ZT

a
Afr

� �
Zr ZaY

� � ¼ 0 �T
� �

;

where

�T ¼ I 0
0 T

� �
;

and hence the TQ factorization of (7) is available trivially from T and Qfr without additional expense.

The matrix Za is not kept fixed, since its role is purely to define an appropriate null space; the TQ
factorization can therefore be updated in the normal fashion as the iterations proceed. No work is
required to ‘delete’ the artificial constraints associated with Za when ZT

r gfr ¼ 0, since this simply
involves repartitioning Qfr. The ‘artificial’ multiplier vector associated with the rows of ZT

a is equal to
ZT
a gfr, and the multipliers corresponding to the rows of the ‘true’ working set are the multipliers that

would be obtained if the artificial constraints were not present. If an artificial constraint is ‘deleted’
from the working set, an A appears alongside the entry in the Jdel column of the printed output (see
Section 12.3).

The number of columns in Za and Zr, the Euclidean norm of ZT
r gfr, and the condition estimator of R

appear in the printed output as Nart, Nrz, Norm Gz and Cond Rz (see Section 12.3).

Under some circumstances, a different type of artificial constraint is used when solving a linear
program. Although the algorithm of nag_opt_qp (e04nfc) does not usually perform simplex steps (in the
traditional sense), there is one exception: a linear program with fewer general constraints than variables
(i.e., mlin � n). (Use of the simplex method in this situation leads to savings in storage.) At the starting
point, the ‘natural’ working set (the set of constraints exactly or nearly satisfied at the starting point) is
augmented with a suitable number of ‘temporary’ bounds, each of which has the effect of temporarily
fixing a variable at its current value. In subsequent iterations, a temporary bound is treated as a standard
constraint until it is deleted from the working set, in which case it is never added again. If a temporary
bound is ‘deleted’ from the working set, an F (for ‘Fixed’) appears alongside the entry in the Jdel
column of the printed output (see Section 12.3).

12 Optional Parameters

A number of optional input and output arguments to nag_opt_qp (e04nfc) are available through the
structure argument options, type Nag_E04_Opt. An argument may be selected by assigning an
appropriate value to the relevant structure member; those arguments not selected will be assigned
default values. If no use is to be made of any of the optional parameters you should use the NAG
defined null pointer, E04_DEFAULT, in place of options when calling nag_opt_qp (e04nfc); the default
settings will then be used for all arguments.

Before assigning values to options directly the structure must be initialized by a call to the function
nag_opt_init (e04xxc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xyc) in which
case initialization of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialization.

If assignment of functions and memory to pointers in the options structure is required, this must be
done directly in the calling program; they cannot be assigned using nag_opt_read (e04xyc).
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12.1 Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for nag_opt_qp
(e04nfc) together with their default values where relevant. The number 	 is a generic notation for
machine precision (see nag_machine_precision (X02AJC)).

Nag_ProblemType prob Nag_QP2
Nag_Start start Nag Cold
Boolean list Nag_TRUE
Nag_PrintType print_level Nag_Soln_Iter
char outfile[80] stdout
void (*print_fun)() NULL
Integer fmax_iter max 50; 5 nþ nclinð Þð Þ
Integer max_iter max 50; 5 nþ nclinð Þð Þ
Boolean min_infeas Nag_FALSE
double crash_tol 0.01
double ftol

ffiffi
	

p
double optim_tol 	0:8

Integer reset_ftol 10000
Integer fcheck 50
double inf_bound 1020

double inf_step max options:inf bound; 1020
� �

Integer hrows n
Integer max_df n
double rank_tol 100	
Integer *state size nþ nclin
double *ax size nclin
double *lambda size nþ nclin
Integer iter
Integer nf

12.2 Description of the Optional Parameters

prob – Nag_ProblemType Default ¼ Nag QP2

On entry: specifies the type of objective function to be minimized during the optimality phase. The
following are the six possible values of options:prob and the size of the arrays h and cvec that are
required to define the objective function:

Nag FP h and cvec not accessed;

Nag LP h not accessed, cvec½n� required;
Nag QP1 h½n� tdh� symmetric, cvec not referenced;

Nag QP2 h½n� tdh� symmetric, cvec½n� required;
Nag QP3 h½n� tdh� upper trapezoidal, cvec not referenced;

Nag QP4 h½n� tdh� upper trapezoidal, cvec½n� required.
If H ¼ 0, i.e., the objective function is purely linear, the efficiency of nag_opt_qp (e04nfc) may be
increased by specifying options:prob as Nag LP.

Constraint: options:prob ¼ Nag FP, Nag LP, Nag QP1, Nag QP2, Nag QP3 or Nag QP4.

start – Nag_Start Default ¼ Nag Cold

On entry: specifies how the initial working set is chosen. With options:start ¼ Nag Cold, nag_opt_qp
(e04nfc) chooses the initial working set based on the values of the variables and constraints at the initial
point. Broadly speaking, the initial working set will include equality constraints and bounds or
inequality constraints that violate or ‘nearly’ satisfy their bounds (to within options:crash tol).
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With options:start ¼ Nag Warm, you must provide a valid definition of every element of the array
pointer options:state (see below for the definition of this member of options). nag_opt_qp (e04nfc) will
override your specification of options:state if necessary, so that a poor choice of the working set will
not cause a fatal error. Nag Warm will be advantageous if a good estimate of the initial working set is
available – for example, when nag_opt_qp (e04nfc) is called repeatedly to solve related problems.

Constraint: options:start ¼ Nag Cold or Nag Warm.

list – Nag_Boolean Default ¼ Nag TRUE

On entry: if options:list ¼ Nag TRUE the argument settings in the call to nag_opt_qp (e04nfc) will be
printed.

print level – Nag_PrintType Default ¼ Nag Soln Iter

On entry: the level of results printout produced by nag_opt_qp (e04nfc). The following values are
available:

Nag NoPrint No output.

Nag Soln The final solution.

Nag Iter One line of output for each iteration.

Nag Iter Long A longer line of output for each iteration with more information (line exceeds
80 characters).

Nag Soln Iter The final solution and one line of output for each iteration.

Nag Soln Iter Long The final solution and one long line of output for each iteration (line exceeds
80 characters).

Nag Soln Iter Const As Nag Soln Iter Long with the Lagrange multipliers, the variables x, the
constraint values Ax and the constraint status also printed at each iteration.

Nag Soln Iter Full As Nag Soln Iter Const with the diagonal elements of the upper triangular
matrix T associated with the TQ factorization (3) of the working set, and the
diagonal elements of the upper triangular matrix R printed at each iteration.

Details of each level of results printout are described in Section 12.3.

Constraint: options:print level ¼ Nag NoPrint, Nag Soln, Nag Iter, Nag Soln Iter, Nag Iter Long,
Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full.

outfile – const char[80] Default ¼ stdout

On entry: the name of the file to which results should be printed. If options:outfile½0� ¼ n0 then the
stdout stream is used.

print fun – pointer to function Default ¼ NULL

On entry: printing function defined by you; the prototype of options:print fun is

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 12.3.1 below for further details.

fmax iter – Integer Default ¼ max 50; 5 nþ nclinð Þð Þ
max iter – Integer Default ¼ max 50; 5 nþ nclinð Þð Þ
On entry: options:fmax iter specifies the maximum number of iterations allowed in the feasibility
phase. options:max iter specifies the maximum number of iterations permitted in the optimality phase.

If you wish to check that a call to nag_opt_qp (e04nfc) is correct before attempting to solve the
problem in full then options:fmax iter may be set to 0. No iterations will then be performed but the
initialization stages prior to the first iteration will be processed and a listing of argument settings output,
if options:list ¼ Nag TRUE (the default setting).

Constraint: options:fmax iter � 0 and options:max iter � 0.
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min infeas – Nag_Boolean Default ¼ Nag FALSE

On entry: options:min infeas specifies whether nag_opt_qp (e04nfc) should minimize the sum of
infeasibilities if no feasible point exists for the constraints.

options:min infeas ¼ Nag FALSE
nag_opt_qp (e04nfc) will terminate as soon as it is evident that the problem is infeasible, in
which case the final point will generally not be the point at which the sum of infeasibilities is
minimized.

options:min infeas ¼ Nag TRUE
nag_opt_qp (e04nfc) will continue until the sum of infeasibilities is minimized.

crash tol – double Default ¼ 0:01

On entry: options:crash tol is used in conjunction with the optional parameter options:start when
options:start has the default setting, i.e., options:start ¼ Nag Cold, nag_opt_qp (e04nfc) selects an
initial working set. The initial working set will include bounds or general inequality constraints that lie
within options:crash tol of their bounds. In particular, a constraint of the form aTj x � l will be included

in the initial working set if aTj x� l



 


 � options:crash tol� 1þ lj jð Þ.

Constraint: 0:0 � options:crash tol � 1:0.

ftol – double Default ¼ ffiffi
	

p

On entry: options:ftol defines the maximum acceptable absolute violation in each constraint at a
‘feasible’ point. For example, if the variables and the coefficients in the general constraints are of order
unity, and the latter are correct to about 6 decimal digits, it would be appropriate to specify options:ftol
as 10�6.

nag_opt_qp (e04nfc) attempts to find a feasible solution before optimizing the objective function. If the
sum of infeasibilities cannot be reduced to zero, options:min infeas can be used to find the minimum
value of the sum. Let Sinf be the corresponding sum of infeasibilities. If Sinf is quite small, it may be
appropriate to raise options:ftol by a factor of 10 or 100. Otherwise, some error in the data should be
suspected.

Note that a ‘feasible solution’ is a solution that satisfies the current constraints to within the tolerance
options:ftol.

Constraint: options:ftol > 0:0.

optim tol – double Default ¼ 	0:8

On entry: options:optim tol defines the tolerance used to determine whether the bounds and generated
constraints have the correct sign for the solution to be judged optimal.

reset ftol – Integer Default ¼ 5

On entry: this option is part of an anti-cycling procedure designed to guarantee progress even on highly
degenerate problems.

The strategy is to force a positive step at every iteration, at the expense of violating the constraints by a
small amount. Suppose that the value of the optional parameter options:ftol is �. Over a period of
options:reset ftol iterations, the feasibility tolerance actually used by nag_opt_qp (e04nfc) increases
from 0:5� to � (in steps of 0:5�=options:reset ftol).

At certain stages the following ‘resetting procedure’ is used to remove constraint infeasibilities. First,
all variables whose upper or lower bounds are in the working set are moved exactly onto their bounds.
A count is kept of the number of nontrivial adjustments made. If the count is positive, iterative
refinement is used to give variables that satisfy the working set to (essentially) machine precision.
Finally, the current feasibility tolerance is reinitialized to 0:5�.

If a problem requires more than options:reset ftol iterations, the resetting procedure is invoked and a
new cycle of options:reset ftol iterations is started with options:reset ftol incremented by 10. (The
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decision to resume the feasibility phase or optimality phase is based on comparing any constraint
infeasibilities with �.)

The resetting procedure is also invoked when nag_opt_qp (e04nfc) reaches an apparently optimal,
infeasible or unbounded solution, unless this situation has already occurred twice. If any nontrivial
adjustments are made, iterations are continued.

Constraint: 0 < options:reset ftol < 10000000.

fcheck – Integer Default ¼ 50

On entry: every options:fcheck iterations, a numerical test is made to see if the current solution x
satisfies the constraints in the working set. If the largest residual of the constraints in the working set is
judged to be too large, the current working set is re-factorized and the variables are recomputed to
satisfy the constraints more accurately.

Constraint: options:fcheck � 1.

inf bound – double Default ¼ 1020

On entry: options:inf bound defines the ‘infinite’ bound in the definition of the problem constraints.
Any upper bound greater than or equal to options:inf bound will be regarded as þ1 (and similarly for
a lower bound less than or equal to �options:inf bound).

Constraint: options:inf bound > 0:0.

inf step – double Default ¼ max options:inf bound; 1020
� �

On entry: options:inf step specifies the magnitude of the change in variables that will be considered a
step to an unbounded solution. (Note that an unbounded solution can occur only when the Hessian is
not positive definite.) If the change in x during an iteration would exceed the value of options:inf step,
the objective function is considered to be unbounded below in the feasible region.

Constraint: options:inf step > 0:0.

hrows – Integer Default ¼ n

On entry: specifies m, the number of rows of the quadratic term H of the QP objective function. The
default value of options:hrows is n, the number of variables of the problem, except that if the problem
is specified as type options:prob ¼ Nag FP or Nag LP, the default value of options:hrows is zero.

If the problem is of type QP, options:hrows will usually be n, the number of variables. However, a
value of options:hrows less than n is appropriate for options:prob ¼ Nag QP3 or Nag QP4 if H is an
upper trapezoidal matrix with m rows. Similarly, options:hrows may be used to define the dimension of
a leading block of nonzeros in the Hessian matrices of options:prob ¼ Nag QP1 or Nag QP2, in which
case the last n�m rows and columns of H are assumed to be zero.

Constraint: 0 � options:hrows � n.

max df – Integer Default ¼ n

On entry: places a limit on the storage allocated for the triangular factor R of the reduced Hessian Hr.
Ideally, options:max df should be set slightly larger than the value of nr expected at the solution. It
need not be larger than mn þ 1, where mn is the number of variables that appear nonlinearly in the
quadratic objective function. For many problems it can be much smaller than mn.

For quadratic problems, a minimizer may lie on any number of constraints, so that nr may vary between
1 and n. The default value is therefore normally n but if the optional parameter options:hrows is
specified then the default value of options:max df is set to the value in options:hrows.

Constraint: 1 � options:max df � n.
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rank tol – double Default ¼ 100	

On entry: options:rank tol enables you to control the condition number of the triangular factor R (see
Section 11). If 
i denotes the function 
i ¼ max R11j j; R22j j; . . . ; Riij jf g, the dimension of R is defined
to be smallest index i such that Riþ1;iþ1



 

 � options:rank tol� 
iþ1j j.
Constraint: 0:0 � options:rank tol < 1:0.

state – Integer * Default memory ¼ nþ nclin

On entry: options:state need not be set if the default option of options:start ¼ Nag Cold is used as
nþ nclin values of memory will be automatically allocated by nag_opt_qp (e04nfc).

If the option options:start ¼ Nag Warm has been chosen, options:state must point to a minimum of
nþ nclin elements of memory. This memory will already be available if the options structure has been
used in a previous call to nag_opt_qp (e04nfc) from the calling program, using the same values of n
and nclin and options:start ¼ Nag Cold. If a previous call has not been made you must be allocate
sufficient memory to options:state.

When a warm start is chosen options:state should specify the desired status of the constraints at the
start of the feasibility phase. More precisely, the first n elements of options:state refer to the upper and
lower bounds on the variables, and the next mlin elements refer to the general linear constraints (if any).
Possible values for options:state½j� are as follows:

options:state½j� Meaning

0 The corresponding constraint should not be in the initial working set.
1 The constraint should be in the initial working set at its lower bound.
2 The constraint should be in the initial working set at its upper bound.
3 The constraint should be in the initial working set as an equality. This value should

only be specified if bl½j� ¼ bu½j�. The values 1, 2 or 3 all have the same effect when
bl½j� ¼ bu½j�.

The values �2, �1 and 4 are also acceptable but will be reset to zero by the function. In particular, if
nag_opt_qp (e04nfc) has been called previously with the same values of n and nclin, options:state
already contains satisfactory information. (See also the description of the optional parameter
options:start.) The function also adjusts (if necessary) the values supplied in x to be consistent with
the values supplied in options:state.

On exit: if nag_opt_qp (e04nfc) exits with a value of fail:code ¼ NE NOERROR, NW_DEAD_POINT,
NW_SOLN_NOT_UNIQUE or NW_NOT_FEASIBLE, the values in options:state indicate the status of
the constraints in the working set at the solution. Otherwise, options:state indicates the composition of
the working set at the final iterate. The significance of each possible value of options:state½j� is as
follows:

options:state½j� Meaning

�2 The constraint violates its lower bound by more than the feasibility tolerance.
�1 The constraint violates its upper bound by more than the feasibility tolerance.
0 The constraint is satisfied to within the feasibility tolerance, but is not in the working

set.
1 This inequality constraint is included in the working set at its lower bound.
2 This inequality constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This value of

options:state can occur only when bl½j� ¼ bu½j�.
4 This corresponds to optimality being declared with x½j� being temporarily fixed at its

current value. This value of options:state can only occur when
fail:code ¼ NW DEAD POINT or NW_SOLN_NOT_UNIQUE.

e04nfc NAG Library Manual

e04nfc.26 Mark 26



ax – double * Default memory ¼ nclin

On entry: nclin values of memory will be automatically allocated by nag_opt_qp (e04nfc) and this is
the recommended method of use of options:ax. However you may supply memory from the calling
program.

On exit: if nclin > 0, options:ax points to the final values of the linear constraints Ax.

lambda – double * Default memory ¼ nþ nclin

On entry: nþ nclin values of memory will be automatically allocated by nag_opt_qp (e04nfc) and this
is the recommended method of use of options:lambda. However you may supply memory from the
calling program.

On exit: the values of the Lagrange multipliers for each constraint with respect to the current working
set. The first n elements contain the multipliers for the bound constraints on the variables, and the next
mlin elements contain the multipliers for the general linear constraints (if any). If options:state½j� ¼ 0 (i.
e., constraint j is not in the working set), options:lambda½j� is zero. If x is optimal, options:lambda½j�
should be non-negative if options:state½j� ¼ 1, non-positive if options:state½j� ¼ 2 and zero if
options:state½j� ¼ 4.

iter – Integer

On exit: the total number of iterations performed in the feasibility phase and (if appropriate) the
optimality phase.

nf – Integer

On exit: the number of times the product Hx has been calculated (i.e., number of calls of qphess).

12.3 Description of Printed Output

You can control the level of printed output with the structure members options:list and
options:print level (see Section 12.2). If options:list ¼ Nag TRUE then the argument values to
nag_opt_qp (e04nfc) are listed, whereas the printout of results is governed by the value of
options:print level. The default of options:print level ¼ Nag Soln Iter provides a single line of output
at each iteration and the final result. This section describes all of the possible levels of results printout
available from nag_opt_qp (e04nfc).

The convention for numbering the constraints in the iteration results is that indices 1 to n refer to the
bounds on the variables, and indices nþ 1 to nþmlin refer to the general constraints. When the status
of a constraint changes, the index of the constraint is printed, along with the designation L (lower
bound), U (upper bound), E (equality), F (temporarily fixed variable) or A (artificial constraint).

When options:print level ¼ Nag Iter or Nag Soln Iter the following line of output is produced at every
iteration. In all cases, the values of the quantities printed are those in effect on completion of the given
iteration.

Itn the iteration count.

Jdel the index of the constraint deleted from the working set. If Jdel is zero, no constraint
was deleted.

Jadd the index of the constraint added to the working set. If Jadd is zero, no constraint was
added.

Step the step taken along the computed search direction. If a constraint is added during the
current iteration (i.e., Jadd is positive), Step will be the step to the nearest constraint.
During the optimality phase, the step can be greater than 1:0 only if the reduced
Hessian is not positive definite.

Ninf the number of violated constraints (infeasibilities). This will be zero during the
optimality phase.

Sinf/Obj the value of the current objective function. If x is not feasible, Sinf gives a weighted
sum of the magnitudes of constraint violations. If x is feasible, Obj is the value of the
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objective function. The output line for the final iteration of the feasibility phase (i.e.,
the first iteration for which Ninf is zero) will give the value of the true objective at the
first feasible point.

During the optimality phase, the value of the objective function will be non-increasing.
During the feasibility phase, the number of constraint infeasibilities will not increase
until either a feasible point is found, or the optimality of the multipliers implies that no
feasible point exists. Once optimal multipliers are obtained, the number of
infeasibilities can increase, but the sum of infeasibilities will either remain constant
or be reduced until the minimum sum of infeasibilities is found.

Bnd the number of simple bound constraints in the current working set.

Lin the number of general linear constraints in the current working set.

Nart the number of artificial constraints in the working set, i.e., the number of columns of Za

(see Section 11). At the start of the optimality phase, Nart provides an estimate of the
number of non-positive eigenvalues in the reduced Hessian.

Nrz the number of columns of Zr (see Section 11). Nrz is the dimension of the subspace in
which the objective function is currently being minimized. The value of Nrz is the
number of variables minus the number of constraints in the working set; i.e.,
Nrz ¼ n� Bndþ Linþ Nartð Þ.
The value of nz, the number of columns of Z (see Section 11) can be calculated as
nz ¼ n� Bndþ Linð Þ. A zero value of nz implies that x lies at a vertex of the feasible
region.

Norm Gz ZT
r gfr

�� ��, the Euclidean norm of the reduced gradient with respect to Zr. During the
optimality phase, this norm will be approximately zero after a unit step.

If options:print level ¼ Nag Iter Long, Nag Soln Iter Long, Nag Soln Iter Const or Nag Soln Iter Full
the line of printout is extended to give the following information. (Note this longer line extends over
more than 80 characters.)

NOpt the number of non-optimal Lagrange multipliers at the current point. NOpt is not
printed if the current x is infeasible or no multipliers have been calculated. At a
minimizer, NOpt will be zero.

Min LM the value of the Lagrange multiplier associated with the deleted constraint. If Min LM is
negative, a lower bound constraint has been deleted; if Min LM is positive, an upper
bound constraint has been deleted. If no multipliers are calculated during a given
iteration, Min LM will be zero.

Cond T a lower bound on the condition number of the working set.

Cond Rz a lower bound on the condition number of the triangular factor R (the Cholesky factor
of the current reduced Hessian). If the problem is specified to be of type
options:prob ¼ Nag LP, Cond Rz is not printed.

Rzz the last diagonal element � of the matrix D associated with the RTDR factorization of
the reduced Hessian Hr (see Section 11.2). Rzz is only printed if Hr is not positive
definite (in which case � 6¼ 1). If the printed value of Rzz is small in absolute value,
then Hr is approximately singular. A negative value of Rzz implies that the objective
function has negative curvature on the current working set.

When options:print level ¼ Nag Soln Iter Const or Nag Soln Iter Full more detailed results are given
at each iteration. For the setting options:print level ¼ Nag Soln Iter Const additional values output are:

Value of x the value of x currently held in x.

State the current value of options:state associated with x.

Value of Ax the value of Ax currently held in options:ax.

State the current value of options:state associated with Ax.
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Also printed are the Lagrange Multipliers for the bound constraints, linear constraints and artificial
constraints.

If options:print level ¼ Nag Soln Iter Full then the diagonal of T and Zr are also output at each
iteration.

When options:print level ¼ Nag Soln, Nag Soln Iter, Nag Soln Iter Const or Nag Soln Iter Full the
final printout from nag_opt_qp (e04nfc) includes a listing of the status of every variable and constraint.
The following describes the printout for each variable.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n, of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a fixed
variable, LL if on its lower bound, UL if on its upper bound, TF if temporarily fixed at
its current value). If Value lies outside the upper or lower bounds by more than the
feasibility tolerance, State will be ++ or -- respectively.

Value is the value of the variable at the final iteration.

Lower bound is the lower bound specified for the variable. (None indicates that
bl½j� 1� � �options:inf bound.)

Upper bound is the upper bound specified for the variable. (None indicates that
bu½j� 1� � options:inf bound.)

Lagr mult is the value of the Lagrange multiplier for the associated bound constraint. This will be
zero if State is FR. If x is optimal, the multiplier should be non-negative if State is
LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its bounds bl½j� 1� and
bu½j� 1�.

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, and with the following change in the heading:

LCon is the name (L) and index j, for j ¼ 1; 2; . . . ;mlin, of the constraint.

12.3.1Output of results via a user-defined printing function

You may also specify your own print function for output of iteration results and the final solution by
use of the options:print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

The rest of this section can be skipped if you only wish to use the default printing facilities.

When a user-defined function is assigned to options:print fun this will be called in preference to the
internal print function of nag_opt_qp (e04nfc). Calls to the user-defined function are again controlled by
means of the options:print level member. Information is provided through st and comm, the two
structure arguments to options:print fun.

If comm!it prt ¼ Nag TRUE then the results from the last iteration of nag_opt_qp (e04nfc) are set in
the following members of st:

first – Nag_Boolean

Nag_TRUE on the first call to options:print fun.

iter – Integer

The number of iterations performed.

n – Integer

The number of variables.

nclin – Integer

The number of linear constraints.
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jdel – Integer

Index of constraint deleted.

jadd – Integer

Index of constraint added.

step – double

The step taken along the current search direction.

ninf – Integer

The number of infeasibilities.

f – double

The value of the current objective function.

bnd – Integer

Number of bound constraints in the working set.

lin – Integer

Number of general linear constraints in the working set.

nart – Integer

Number of artificial constraints in the working set.

nrz – Integer

Number of columns of Zr.

norm_gz – double

Euclidean norm of the reduced gradient, ZT
r gfr

�� ��.
nopt – Integer

Number of non-optimal Lagrange multipliers.

min_lm – double

Value of the Lagrange multiplier associated with the deleted constraint.

condt – double

A lower bound on the condition number of the working set.

x – double

x points to the n memory locations holding the current point x.

ax – double

options:ax points to the nclin memory locations holding the current values Ax.

state – Integer

options:state points to the nþ nclin memory locations holding the status of the variables and
general linear constraints. See Section 12.2 for a description of the possible status values.

t – double

The upper triangular matrix T with st!lin columns. Matrix element i; j is held in
st!t½ i� 1ð Þ � st!tdtþ j� 1�.

tdt – Integer

The trailing dimension for st!t.

If st!rset ¼ Nag TRUE then the problem is QP, nag_opt_qp (e04nfc) is executing the optimality phase
and the following members of st are also set:
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r – double

The upper triangular matrix R with st!nrz columns. Matrix element i; j is held in
st!r½ i� 1ð Þ � st!tdrþ j� 1�.

tdr – Integer

The trailing dimension for st!r.

condr – double

A lower bound on the condition number of the triangular factor R.

rzz – double

Last diagonal element � of the matrix D.

If comm!new lm ¼ Nag TRUE then the Lagrange multipliers have been updated and the following
members of st are set:

kx – Integer

Indices of the bound constraints with associated multipliers. Value of st!kx½i� is the index of the
constraint with multiplier st!lambda½i�, for i ¼ 0; 1; . . . ; st!bnd� 1.

kactive – Integer

Indices of the linear constraints with associated multipliers. Value of st!kactive½i� is the index
of the constraint with multiplier st!lambda½st!bndþ i�, for i ¼ 0; 1; . . . ; st!lin� 1.

lambda – double

The multipliers for the constraints in the working set. options:lambda½i�, for
i ¼ 0; 1; . . . ; st!bnd� 1, hold the multipliers for the bound constraints while the multipliers
for the linear constraints are held at indices i ¼ st!bnd; . . . ; st!bndþ st!lin� 1.

gq – double

st!gq½i�, for i ¼ 0; 1; . . . ; st!nart� 1, hold the multipliers for the artificial constraints.

The following members of st are also relevant and apply when comm!it prt or comm!new lm is
Nag_TRUE.

refactor – Nag_Boolean

Nag_TRUE if iterative refinement performed. See Section 12.2 and optional parameter
options:reset ftol.

jmax – Integer

If st!refactor ¼ Nag TRUE then st!jmax holds the index of the constraint with the maximum
violation.

errmax – double

If st!refactor ¼ Nag TRUE then st!errmax holds the value of the maximum violation.

moved – Nag_Boolean

Nag_TRUE if some variables have been moved to their bounds. See the optional parameter
options:reset ftol.

nmoved – Integer

If st!moved ¼ Nag TRUE then st!nmoved holds the number of variables which were moved
to their bounds.

rowerr – Nag_Boolean

Nag_TRUE if some constraints are not satisfied to within options:ftol.
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feasible – Nag_Boolean

Nag_TRUE when a feasible point has been found.

If comm!sol prt ¼ Nag TRUE then the final result from nag_opt_qp (e04nfc) is available and the
following members of st are set:

iter – Integer

The number of iterations performed.

n – Integer

The number of variables.

nclin – Integer

The number of linear constraints.

x – double

x points to the n memory locations holding the final point x.

f – double

The final objective function value or, if x is not feasible, the sum of infeasibilities. If the problem
is of type options:prob ¼ Nag FP and x is feasible then st!f is set to zero.

ax – double

st!ax points to the nclin memory locations holding the final values Ax.

state – Integer

st!state points to the nþ nclin memory locations holding the final status of the variables and
general linear constraints. See Section 12.2 for a description of the possible status values.

lambda – double

st!lambda points to the nþ nclin final values of the Lagrange multipliers.

bl – double

st!bl points to the nþ nclin lower bound values.

bu – double

st!bu points to the nþ nclin upper bound values.

endstate – Nag_EndState

The state of termination of nag_opt_qp (e04nfc). Possible values of st!endstate and their
correspondence to the exit value of fail.code are:

Value of st!endstate Value of fail.code
Nag Feasible and Nag Optimal NE_NOERROR
Nag Deadpoint and Nag Weakmin If the problem is QP NW_DEAD_POINT otherwise

NW_SOLN_NOT_UNIQUE
Nag Unbounded NE_UNBOUNDED
Nag Infeasible NW_NOT_FEASIBLE
Nag Too Many Iter NW_TOO_MANY_ITER
Nag Hess Too Big NE_HESS_TOO_BIG

The relevant members of the structure comm are:

it_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the result of the current iteration.

sol_prt – Nag_Boolean

Will be Nag_TRUE when the print function is called with the final result.
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new_lm – Nag_Boolean

Will be Nag_TRUE when the Lagrange multipliers have been updated.

user – double
iuser – Integer
p – Pointer

Pointers for communication of user information. You must allocate memory either before entry to
nag_opt_qp (e04nfc) or during a call to qphess or options:print fun. The type Pointer will be
void * with a C compiler that defines void * and char * otherwise.
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