
NAG Library Function Document

nag_opt_bounds_qa_no_deriv (e04jcc)

1 Purpose

nag_opt_bounds_qa_no_deriv (e04jcc) is an easy-to-use algorithm that uses methods of quadratic
approximation to find a minimum of an objective function F over x 2 Rn, subject to fixed lower and
upper bounds on the independent variables x1; x2; . . . ; xn. Derivatives of F are not required.

The function is intended for functions that are continuous and that have continuous first and second
derivatives (although it will usually work even if the derivatives have occasional discontinuities).
Efficiency is maintained for large n.

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_bounds_qa_no_deriv (

void (*objfun)(Integer n, const double x[], double *f, Nag_Comm *comm,
Integer *inform),

Integer n, Integer npt, double x[], const double bl[],
const double bu[], double rhobeg, double rhoend,

void (*monfun)(Integer n, Integer nf, const double x[], double f,
double rho, Nag_Comm *comm, Integer *inform),

Integer maxcal, double *f, Integer *nf, Nag_Comm *comm, NagError *fail)

3 Description

nag_opt_bounds_qa_no_deriv (e04jcc) is applicable to problems of the form:

minimize
x2Rn

F xð Þ subject to l � x � u and l � u;

where F is a nonlinear scalar function whose derivatives may be unavailable, and where the bound
vectors are elements of Rn. Relational operators between vectors are interpreted elementwise.

Fixing variables (that is, setting ‘i ¼ ui for some i) is allowed in nag_opt_bounds_qa_no_deriv
(e04jcc).

You must supply a function to calculate the value of F at any given point x.

The method used by nag_opt_bounds_qa_no_deriv (e04jcc) is based on BOBYQA, the method of
Bound Optimization BY Quadratic Approximation described in Powell (2009). In particular, each
iteration of nag_opt_bounds_qa_no_deriv (e04jcc) generates a quadratic approximation Q to F that
agrees with F at m automatically chosen interpolation points. The value of m is a constant prescribed
by you. Updates to the independent variables mostly occur from approximate solutions to trust-region
subproblems, using the current quadratic model.

4 References

Powell M J D (2009) The BOBYQA algorithm for bound constrained optimization without derivatives
Report DAMTP 2009/NA06 University of Cambridge http://www.damtp.cam.ac.uk/user/na/NA_papers/
NA2009_06.pdf

e04 – Minimizing or Maximizing a Function e04jcc

Mark 26 e04jcc.1

http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf
http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf

5 Arguments

1: objfun – function, supplied by the user External Function

objfun must evaluate the objective function F at a specified vector x.

The specification of objfun is:

void objfun (Integer n, const double x[], double *f, Nag_Comm *comm,
Integer *inform)

1: n – Integer Input

On entry: n, the number of independent variables.

2: x½n� – const double Input

On entry: x, the vector at which the objective function is to be evaluated.

3: f – double * Output

On exit: must be set to the value of the objective function at x, unless you have
specified termination of the current problem using inform.

4: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objfun.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_opt_bounds_qa_no_deriv
(e04jcc) you may allocate memory and initialize these pointers with various
quantities for use by objfun when called from nag_opt_bounds_qa_no_deriv
(e04jcc) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

5: inform – Integer * Output

On exit: must be set to a value describing the action to be taken by the solver on return
from objfun. Specifically, if the value is negative the solution of the current problem
will terminate immediately; otherwise, computations will continue.

2: n – Integer Input

On entry: n, the number of independent variables.

Constraint: n � 2 and nr � 2, where nr denotes the number of non-fixed variables.

3: npt – Integer Input

On entry: m, the number of interpolation conditions imposed on the quadratic approximation at
each iteration.

Suggested value: npt ¼ 2� nr þ 1, where nr denotes the number of non-fixed variables.

Constraint: nr þ 2 � npt � nrþ1ð Þ� nrþ2ð Þ
2 , where nr denotes the number of non-fixed variables.

4: x½n� – double Input/Output

On entry: an estimate of the position of the minimum. If any component is out-of-bounds it is
replaced internally by the bound it violates.

e04jcc NAG Library Manual

e04jcc.2 Mark 26

On exit: the lowest point found during the calculations. Thus, if fail:code ¼ NE_NOERROR on
exit, x is the position of the minimum.

5: bl½n� – const double Input
6: bu½n� – const double Input

On entry: the fixed vectors of bounds: the lower bounds l and the upper bounds u, respectively.
To signify that a variable is unbounded you should choose a large scalar r appropriate to your
problem, then set the lower bound on that variable to �r and the upper bound to r. For well-

scaled problems r ¼ r
1
4
max may be suitable, where rmax denotes the largest positive model number

(see nag_real_largest_number (X02ALC)).

Constraints:

if x½i � 1� is to be fixed at bl½i � 1�, then bl½i � 1� ¼ bu½i � 1�;
otherwise bu½i � 1� � bl½i � 1� � 2:0� rhobeg, for i ¼ 1; 2; . . . ; n.

7: rhobeg – double Input

On entry: an initial lower bound on the value of the trust-region radius.

Suggested value: rhobeg should be about one tenth of the greatest expected overall change to a
variable: the initial quadratic model will be constructed by taking steps from the initial x of
length rhobeg along each coordinate direction.

Constraints:

rhobeg > 0:0;
rhobeg � rhoend.

8: rhoend – double Input

On entry: a final lower bound on the value of the trust-region radius.

Suggested value: rhoend should indicate the absolute accuracy that is required in the final values
of the variables.

Constraint: rhoend � macheps, where macheps ¼ nag machine precision, the machine preci-
sion..

9: monfun – function, supplied by the user External Function

monfun may be used to monitor the optimization process. It is invoked every time a new trust-
region radius is chosen.

If no monitoring is required, monfun may be specified as NULLFN.

The specification of monfun is:

void monfun (Integer n, Integer nf, const double x[], double f,
double rho, Nag_Comm *comm, Integer *inform)

1: n – Integer Input

On entry: n, the number of independent variables.

2: nf – Integer Input

On entry: the cumulative number of calls made to objfun.

3: x½n� – const double Input

On entry: the current best point.

e04 – Minimizing or Maximizing a Function e04jcc

Mark 26 e04jcc.3

4: f – double Input

On entry: the value of objfun at x.

5: rho – double Input

On entry: a lower bound on the current trust-region radius.

6: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to
monfun.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_opt_bounds_qa_no_deriv
(e04jcc) you may allocate memory and initialize these pointers with various
quantities for use by monfun when called from nag_opt_bounds_qa_no_deriv
(e04jcc) (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

7: inform – Integer * Output

On exit: must be set to a value describing the action to be taken by the solver on return
from monfun. Specifically, if the value is negative the solution of the current problem
will terminate immediately; otherwise, computations will continue.

10: maxcal – Integer Input

On entry: the maximum permitted number of calls to objfun.

Constraint: maxcal � 1.

11: f – double * Output

On exit: the function value at the lowest point found (x).

12: nf – Integer * Output

On exit : unless fail:code ¼ NE_RESCUE_FAILED, NE_TOO_MANY_FEVALS,
NE_TR_STEP_FAILED or NE_USER_STOP on exit, the total number of calls made to objfun.

13: comm – Nag_Comm *

The NAG communication argument (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

14: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

nag_opt_bounds_qa_no_deriv (e04jcc) returns with fail:code ¼ NE_NOERROR if the final trust-
region radius has reached its lower bound rhoend.

e04jcc NAG Library Manual

e04jcc.4 Mark 26

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_BOUND

On entry, rhobeg ¼ valueh i, bl½i� 1� ¼ valueh i, bu½i� 1� ¼ valueh i and i ¼ valueh i.
Constraint: if bl½i� 1� 6¼ bu½i� 1� in coordinate i, then bu½i� 1� � bl½i� 1� � 2� rhobeg.

NE_INT

On entry, maxcal ¼ valueh i.
Constraint: maxcal � 1.

There were nr ¼ valueh i unequal bounds.
Constraint: nr � 2.

There were nr ¼ valueh i unequal bounds and npt ¼ valueh i on entry.

Constraint: nr þ 2 � npt � nrþ1ð Þ� nrþ2ð Þ
2 .

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_REAL

On entry, rhobeg ¼ valueh i.
Constraint: rhobeg > 0:0.

On entry, rhoend ¼ valueh i.
Constraint: rhoend � macheps, where macheps ¼ nag machine precision, the machine
precision.

NE_REAL_2

On entry, rhobeg ¼ valueh i and rhoend ¼ valueh i.
Constraint: rhoend � rhobeg.

NE_RESCUE_FAILED

A rescue procedure has been called in order to correct damage from rounding errors when
computing an update to a quadratic approximation of F , but no further progess could be made.
Check your specification of objfun and whether the function needs rescaling. Try a different
initial x.

NE_TOO_MANY_FEVALS

The function evaluations limit was reached: objfun has been called maxcal times.

e04 – Minimizing or Maximizing a Function e04jcc

Mark 26 e04jcc.5

NE_TR_STEP_FAILED

The predicted reduction in a trust-region step was non-positive. Check your specification of
objfun and whether the function needs rescaling. Try a different initial x.

NE_USER_STOP

User-supplied monitoring function requested termination.

User-supplied objective function requested termination.

7 Accuracy

Experience shows that, in many cases, on successful termination the 1-norm distance from the best
point x to a local minimum of F is less than 10� rhoend, unless rhoend is so small that such accuracy
is unattainable.

8 Parallelism and Performance

nag_opt_bounds_qa_no_deriv (e04jcc) makes calls to BLAS and/or LAPACK routines, which may be
threaded within the vendor library used by this implementation. Consult the documentation for the
vendor library for further information.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each invocation of nag_opt_bounds_qa_no_deriv (e04jcc), local workspace arrays of fixed length

are allocated internally. The total size of these arrays amounts to nptþ 6ð Þ � nptþ nrð Þ þ nr� 3nrþ21ð Þ
2

double elements and nr Integer elements, where nr denotes the number of non-fixed variables; that is,
the total size is O n4

r

� �
. If you follow the recommendation for the choice of npt on entry, this total size

reduces to O n2
r

� �
.

Usually the total number of function evaluations (nf) is substantially less than O n2
r

� �
, and often, if

npt ¼ 2� nr þ 1 on entry, nf is only of magnitude nr or less.

10 Example

This example involves the minimization of

F ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4

subject to

1 � x1 � 3
�2 � x2 � 0
1 � x4 � 3;

starting from the initial guess 3;�1; 0; 1ð Þ.

10.1 Program Text

/* nag_opt_bounds_qa_no_deriv (e04jcc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*

e04jcc NAG Library Manual

e04jcc.6 Mark 26

*/

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <nag_stdlib.h>
#include <nage04.h>
#include <nagx04.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL objfun(Integer n, const double x[], double *f,
Nag_Comm *comm, Integer *inform);

static void NAG_CALL monfun(Integer n, Integer nf, const double x[],
double f, double rho, Nag_Comm *comm,
Integer *inform);

#ifdef __cplusplus
}
#endif

int main(void)
{

static double ruser[2] = { -1.0, -1.0 };
Integer exit_status = 0;
double rhobeg, rhoend, f;
Integer i, n, nf, npt, maxcal;
double *bl = 0, *bu = 0, *x = 0;
NagError fail;
Nag_Comm comm;

INIT_FAIL(fail);

printf("nag_opt_bounds_qa_no_deriv (e04jcc) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

maxcal = 500;
rhobeg = 1.0e-1;
rhoend = 1.0e-6;
n = 4;
npt = 2 * n + 1;

if (!(x = NAG_ALLOC(n, double)) ||
!(bl = NAG_ALLOC(n, double)) || !(bu = NAG_ALLOC(n, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Set bounds on variables */
/* x[2] is not bounded, so we set bl[2] to a large negative
* number and bu[2] to a large positive number
*/

bl[0] = 1.0;
bl[1] = -2.0;
bl[2] = -1.0e10;
bl[3] = 1.0;
bu[0] = 3.0;
bu[1] = 0.0;
bu[2] = 1.0e10;
bu[3] = 3.0;
x[0] = 3.0;
x[1] = -1.0;
x[2] = 0.0;
x[3] = 1.0;

e04 – Minimizing or Maximizing a Function e04jcc

Mark 26 e04jcc.7

/* Call optimization routine */
/* nag_opt_bounds_qa_no_deriv (e04jcc).

Bound-constrained optimization by quadratic approximations. */
nag_opt_bounds_qa_no_deriv(objfun, n, npt, x, bl, bu, rhobeg, rhoend,

monfun, maxcal, &f, &nf, &comm, &fail);

if (fail.code == NE_NOERROR ||
fail.code == NE_TOO_MANY_FEVALS ||
fail.code == NE_TR_STEP_FAILED ||
fail.code == NE_RESCUE_FAILED || fail.code == NE_USER_STOP) {

if (fail.code == NE_NOERROR) {
printf("Successful exit.\n");

}

printf("Function value at lowest point found is %11.3f\n", f);
printf("The corresponding x is:");
for (i = 0; i <= n - 1; ++i) {

printf(" %11.3f", x[i]);
}
printf("\n");

}
else {

exit_status = 1;
}

if (fail.code != NE_NOERROR) {
printf("%s\n", fail.message);

}

END:
NAG_FREE(x);
NAG_FREE(bl);
NAG_FREE(bu);

return exit_status;
}

static void NAG_CALL objfun(Integer n, const double x[], double *f,
Nag_Comm *comm, Integer *inform)

{
/* Routine to evaluate objective function. */

double a, b, c, d, x1, x2, x3, x4;

if (comm->user[0] == -1.0) {
printf("(User-supplied callback objfun, first invocation.)\n");
comm->user[0] = 0.0;

}
*inform = 0;
x1 = x[0];
x2 = x[1];
x3 = x[2];
x4 = x[3];

/* Supply a single function value */
a = x1 + 10.0 * x2;
b = x3 - x4;
c = x2 - 2.0 * x3, c *= c;
d = x1 - x4, d *= d;
*f = a * a + 5.0 * b * b + c * c + 10.0 * d * d;

}

static void NAG_CALL monfun(Integer n, Integer nf, const double x[], double f,
double rho, Nag_Comm *comm, Integer *inform)

{
/* Monitoring routine */
Integer j;
Nag_Boolean verbose;

if (comm->user[1] == -1.0) {

e04jcc NAG Library Manual

e04jcc.8 Mark 26

printf("(User-supplied callback monfun, first invocation.)\n");
comm->user[1] = 0.0;

}
*inform = 0;

printf("\nMonitoring: new trust region radius = %13.3e\n", rho);
verbose = Nag_FALSE; /* Set this to Nag_TRUE to get more detailed output */
if (verbose)

{
printf("Number of function evaluations = %16" NAG_IFMT "\n", nf);
printf("Current function value = %13.5f\n", f);
printf("The corresponding x is:\n");
for (j = 0; j <= n - 1; ++j) {

printf(" %13.5e", x[j]);
}
printf("\n");

}
}

10.2 Program Data

None.

10.3 Program Results

nag_opt_bounds_qa_no_deriv (e04jcc) Example Program Results
(User-supplied callback objfun, first invocation.)
(User-supplied callback monfun, first invocation.)

Monitoring: new trust region radius = 1.000e-02

Monitoring: new trust region radius = 1.000e-03

Monitoring: new trust region radius = 1.000e-04

Monitoring: new trust region radius = 1.000e-05

Monitoring: new trust region radius = 1.000e-06
Successful exit.
Function value at lowest point found is 2.434
The corresponding x is: 1.000 -0.085 0.409 1.000

e04 – Minimizing or Maximizing a Function e04jcc

Mark 26 e04jcc.9 (last)

	e04jcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Powell (2009)

	5 Arguments
	objfun
	n
	x
	f
	comm
	user
	iuser
	p

	inform

	n
	npt
	x
	bl
	bu
	rhobeg
	rhoend
	monfun
	n
	nf
	x
	f
	rho
	comm
	user
	iuser
	p

	inform

	maxcal
	f
	nf
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_BOUND
	NE_INT
	NE_INTERNAL_ERROR
	NE_NO_LICENCE
	NE_REAL
	NE_REAL_2
	NE_RESCUE_FAILED
	NE_TOO_MANY_FEVALS
	NE_TR_STEP_FAILED
	NE_USER_STOP

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

