
NAG Library Function Document

nag_opt_check_2nd_deriv (e04hdc)

1 Purpose

nag_opt_check_2nd_deriv (e04hdc) checks that a user-supplied function for calculating second
derivatives of an objective function is consistent with a user-supplied function for calculating the
corresponding first derivatives.

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_check_2nd_deriv (Integer n,

void (*objfun)(Integer n, const double x[], double *objf, double g[],
Nag_Comm *comm),

void (*hessfun)(Integer n, const double x[], double h[], double hd[],
Nag_Comm *comm),

const double x[], double g[], double hesl[], double hesd[],
Nag_Comm *comm, NagError *fail)

3 Description

Routines for minimizing a function F x1; x2; . . . ; xnð Þ of the variables x1; x2; . . . ; xn may require you to
provide a subroutine to evaluate the second derivatives of F . nag_opt_check_2nd_deriv (e04hdc) is
designed to check the second derivatives calculated by such user-supplied functions. As well as the
function to be checked (hessfun), you must supply a function (objfun) to evaluate the first derivatives,
and a point x ¼ x1; x2; . . . ; xnð ÞT at which the checks will be made. Note that nag_opt_check_2nd_deriv
(e04hdc) checks functions of the form required for nag_opt_bounds_2nd_deriv (e04lbc).

nag_opt_check_2nd_deriv (e04hdc) first calls objfun and hessfun to evaluate the first and second
derivatives of F at x. The user-supplied Hessian matrix (H, say) is projected onto two orthogonal
vectors y and z to give the scalars yTHy and zTHz respectively. The same projections of the Hessian
matrix are also estimated by finite differences, giving

p ¼ yTg xþ hyð Þ � yTg xð Þð Þ=h
and q ¼ zTg xþ hzð Þ � zTg xð Þð Þ=h

respectively, where gðÞ denotes the vector of first derivatives at the point in brackets and h is a small
positive scalar. If the relative difference between p and yTHy or between q and zTHz is judged too
large, an error indicator is set.

4 References

None.

5 Arguments

1: n – Integer Input

On entry: the number n of independent variables in the objective function.

Constraint: n � 1.

e04 – Minimizing or Maximizing a Function e04hdc

Mark 26 e04hdc.1

2: objfun – function, supplied by the user External Function

objfun must evaluate the function F xð Þ and its first derivatives
@F

@xj
at a specified point.

(However, if you do not wish to calculate F or its first derivatives at a particular point, there is
the option of setting an argument to cause nag_opt_check_2nd_deriv (e04hdc) to terminate
immediately.)

The specification of objfun is:

void objfun (Integer n, const double x[], double *objf, double g[],
Nag_Comm *comm)

1: n – Integer Input

On entry: the number n of variables.

2: x½n� – const double Input

On entry: the point x at which the value of F , or F and the
@F

@xj
, are required.

3: objf – double * Output

On exit: objfun must set objf to the value of the objective function F at the current
point x. If it is not possible to evaluate F then objfun should assign a negative value to
comm!flag; nag_opt_check_2nd_deriv (e04hdc) will then terminate.

4: g½n� – double Output

On exit: unless comm!flag is reset to a negative number, objfun must set g½j� 1� to
the value of the first derivative

@F

@xj
at the current point x for j ¼ 1; 2; . . . ; n.

5: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objfun.

flag – Integer Output

On exit: if objfun resets comm!flag to some negative number then
nag_opt_check_2nd_deriv (e04hdc) will terminate immediately with the error
indicator NE_USER_STOP. If fail is supplied to nag_opt_check_2nd_deriv
(e04hdc) fail:errnum will be set to your setting of comm!flag.

first – Nag_Boolean Input

On entry: will be set to Nag_TRUE on the first call to objfun and Nag_FALSE
for all subsequent calls.

nf – Integer Input

On entry: the number of evaluations of the objective function; this value will be
equal to the number of calls made to objfun (including the current one).

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void * and
char * otherwise.

Before calling nag_opt_check_2nd_deriv (e04hdc) these pointers may be
allocated memory and initialized with various quantities for use by objfun
when called from nag_opt_check_2nd_deriv (e04hdc).

e04hdc NAG Library Manual

e04hdc.2 Mark 26

Note: nag_opt_check_deriv (e04hcc) should be used to check the first derivatives calculated by
objfun before nag_opt_check_2nd_deriv (e04hdc) is used to check the second derivatives, since
nag_opt_check_2nd_deriv (e04hdc) assumes that the first derivatives are correct.

3: hessfun – function, supplied by the user External Function

hessfun must calculate the second derivatives of F xð Þ at any point x. (As with objfun there is
the option of causing nag_opt_check_2nd_deriv (e04hdc) to terminate immediately.)

The specification of hessfun is:

void hessfun (Integer n, const double x[], double h[], double hd[],
Nag_Comm *comm)

1: n – Integer Input

On entry: the number n of variables in the objective function.

2: x½n� – const double Input

On entry: the point x at which the second derivatives are required.

3: h½n� n� 1ð Þ=2� – double Output

This array is allocated internally by nag_opt_check_2nd_deriv (e04hdc).

On exit: unless comm!flag is reset to a negative number hessfun must place the strict
lower triangle of the second derivative matrix of F (evaluated at the point x) in h,
stored by rows, i.e., set

h½ i� 1ð Þ i� 2ð Þ=2þ j� 1� ¼ @2F

@xi@xj

����
x¼x

; for i ¼ 2; 3; . . . ; n; j ¼ 1; 2; . . . ; i� 1:

(The upper triangle is not required because the matrix is symmetric.)

4: hd½n� – double Input/Output

On entry: the value of
@F

@xj
at the point x, for j ¼ 1; 2; . . . ; n. These values may be useful in the

evaluation of the second derivatives.

On exit: unless comm!flag is reset to a negative number hessfun must place the diagonal
elements of the second derivative matrix of F (evaluated at the point x) in hd, i.e., set

hd j� 1½ � ¼ @2F

@x2
j

 !
x¼x

; for j ¼ 1; 2; . . . ; n:

5: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objfun.

flag – Integer Output

On exit: if hessfun resets comm!flag to some negative number then nag_opt_ch
eck_2nd_deriv (e04hdc) will terminate immediately with the error indicator NE_USER_-
STOP. If fail is supplied to nag_opt_check_2nd_deriv (e04hdc) fail:errnum will be set to
your setting of comm!flag.

first – Nag_Boolean Input

On entry: will be set to Nag_TRUE on the first call to hessfun and Nag_FALSE for all
subsequent calls.

e04 – Minimizing or Maximizing a Function e04hdc

Mark 26 e04hdc.3

nf – Integer Input

On entry: the number of evaluations of the objective function; this value will be equal to
the number of calls made to hessfun (including the current one).

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void * and char *

otherwise.

Before calling nag_opt_check_2nd_deriv (e04hdc) these pointers may be allocated
memory and initialized with various quantities for use by hessfun when called from
nag_opt_check_2nd_deriv (e04hdc).

Note: the array x must not be changed by hessfun.

4: x½n� – const double Input

On entry: x½j � 1�, for j ¼ 1; 2; . . . ; n must contain the coordinates of a suitable point at which to
check the derivatives calculated by objfun. ‘Obvious’ settings, such as 0.0 or 1.0, should not be
used since, at such particular points, incorrect terms may take correct values (particularly zero),
so that errors could go undetected. Similarly, it is advisable that no two elements of x should be
the same.

5: g½n� – double Output

On exit: unless comm!flag is reset to a negative number g½j� 1� contains the value of the first

derivative
@F

@xj
at the point given in x, as calculated by objfun for j ¼ 1; 2; . . . ; n.

6: hesl½n� n� 1ð Þ=2� – double Output

On exit: unless comm!flag is reset to a negative number hesl contains the strict lower triangle
of the second derivative matrix of F , as evaluated by hessfun at the point given in x, stored by
rows.

7: hesd½n� – double Output

On exit: unless comm!flag is reset to a negative number hesd contains the diagonal elements of
the second derivative matrix of F , as evaluated by hessfun at the point given in x.

8: comm – Nag_Comm * Input/Output

Note: comm is a NAG defined type (see Section 2.3.1.1 in How to Use the NAG Library and its
Documentation).

On entry/exit: structure containing pointers for communication to user-supplied functions; see the
above description of objfun for details. If you do not need to make use of this communication
feature the null pointer NAGCOMM_NULL may be used in the call to nag_opt_check_2nd_deriv
(e04hdc); comm will then be declared internally for use in calls to user-supplied functions.

9: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

e04hdc NAG Library Manual

e04hdc.4 Mark 26

NE_DERIV_ERRORS

Large errors were found in the derivatives of the objective function.

NE_INT_ARG_LT

On entry, n ¼ valueh i.
Constraint: n � 1.

NE_USER_STOP

User requested termination, user flag value ¼ valueh i.

7 Accuracy

The error NE_DERIV_ERRORS is returned if

yTHy� pj j � ffiffiffi
h

p � yTHyj j þ 1:0ð Þ
or zTHz� qj j � ffiffiffi

h
p � zTHzj j þ 1:0ð Þ

where h is set equal to
ffiffi
�

p
(� being the machine precision as given by nag_machine_precision

(X02AJC) and other quantities are as defined in Section 3.

8 Parallelism and Performance

nag_opt_check_2nd_deriv (e04hdc) is not threaded in any implementation.

9 Further Comments

nag_opt_check_2nd_deriv (e04hdc) calls hessfun once and objfun three times.

10 Example

Suppose that it is intended to use nag_opt_bounds_2nd_deriv (e04lbc) to minimize

F ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4:
The following program could be used to check the second derivatives calculated by the required
hessfun function. (The call of nag_opt_check_2nd_deriv (e04hdc) is preceded by a call of
nag_opt_check_deriv (e04hcc) to check the function objfun which calculates the first derivatives.)

10.1 Program Text

/* nag_opt_check_2nd_deriv (e04hdc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nage04.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL h(Integer n, const double xc[], double fhesl[],

e04 – Minimizing or Maximizing a Function e04hdc

Mark 26 e04hdc.5

double fhesd[], Nag_Comm *comm);

static void NAG_CALL funct(Integer n, const double xc[], double *fc,
double gc[], Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

int main(void)
{

static double ruser[2] = { -1.0, -1.0 };
Integer exit_status = 0, i, j, k, n;
NagError fail;
Nag_Comm comm;
double f, *g = 0, *hesd = 0, *hesl = 0, *x = 0;

INIT_FAIL(fail);

#define X(I) x[(I) -1]
#define HESL(I) hesl[(I) -1]
#define HESD(I) hesd[(I) -1]
#define G(I) g[(I) -1]

printf("nag_opt_check_2nd_deriv (e04hdc) Example Program Results\n\n");

/* For communication with user-supplied functions: */
comm.user = ruser;

/* Set up an arbitrary point at which to check the derivatives */
n = 4;

if (n >= 1) {
if (!(hesd = NAG_ALLOC(n, double)) ||

!(hesl = NAG_ALLOC(n * (n - 1) / 2, double)) ||
!(g = NAG_ALLOC(n, double)) || !(x = NAG_ALLOC(n, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}
else {

printf("Invalid n.\n");
exit_status = 1;
return exit_status;

}

X(1) = 1.46;
X(2) = -0.82;
X(3) = 0.57;
X(4) = 1.21;

printf("The test point is\n");
for (j = 1; j <= n; ++j)

printf("%9.4f", X(j));
printf("\n");

/* Check the 1st derivatives */
/* nag_opt_check_deriv (e04hcc).
* Derivative checker for use with nag_opt_bounds_deriv
* (e04kbc)
*/

nag_opt_check_deriv(n, funct, &X(1), &f, &G(1), &comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_opt_check_deriv (e04hcc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Check the 2nd derivatives */
/* nag_opt_check_2nd_deriv (e04hdc).

e04hdc NAG Library Manual

e04hdc.6 Mark 26

* Checks second derivatives of a user-defined function
*/

nag_opt_check_2nd_deriv(n, funct, h, &X(1), &G(1), &HESL(1), &HESD(1),
&comm, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_opt_check_2nd_deriv (e04hdc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

printf("\n2nd derivatives are consistent with 1st derivatives.\n\n");
printf("At the test point, funct gives the function value, %13.4e\n", f);
printf("and the 1st derivatives\n");
for (j = 1; j <= n; ++j)

printf("%12.3e%s", G(j), j % 4 ? "" : "\n");

printf("\nh gives the lower triangle of the Hessian matrix\n");
printf("%12.3e\n", HESD(1));
k = 1;
for (i = 2; i <= n; ++i) {

for (j = k; j <= k + i - 2; ++j)
printf("%12.3e", HESL(j));

printf("%12.3e\n", HESD(i));
k = k + i - 1;

}
END:

NAG_FREE(hesd);
NAG_FREE(hesl);
NAG_FREE(g);
NAG_FREE(x);
return exit_status;

}

static void NAG_CALL funct(Integer n, const double xc[], double *fc,
double gc[], Nag_Comm *comm)

{
/* Routine to evaluate objective function and its 1st derivatives. */

if (comm->user[0] == -1.0) {
printf("(User-supplied callback funct, first invocation.)\n");
comm->user[0] = 0.0;

}
*fc = pow(xc[0] + 10.0 * xc[1], 2.0) + 5.0 * pow(xc[2] - xc[3], 2.0)

+ pow(xc[1] - 2.0 * xc[2], 4.0) + 10.0 * pow(xc[0] - xc[3], 4.0);

gc[0] = 2.0 * (xc[0] + 10.0 * xc[1]) + 40.0 * pow(xc[0] - xc[3], 3.0);
gc[1] = 20.0 * (xc[0] + 10.0 * xc[1]) + 4.0 * pow(xc[1] - 2.0 * xc[2], 3.0);
gc[2] = 10.0 * (xc[2] - xc[3]) - 8.0 * pow(xc[1] - 2.0 * xc[2], 3.0);
gc[3] = 10.0 * (xc[3] - xc[2]) - 40.0 * pow(xc[0] - xc[3], 3.0);

}

static void NAG_CALL h(Integer n, const double xc[], double fhesl[],
double fhesd[], Nag_Comm *comm)

{
/* Routine to evaluate 2nd derivatives */

if (comm->user[1] == -1.0) {
printf("(User-supplied callback h, first invocation.)\n");
comm->user[1] = 0.0;

}
fhesd[0] = 2.0 + 120.0 * pow(xc[0] - xc[3], 2.0);
fhesd[1] = 200.0 + 12.0 * pow(xc[1] - 2.0 * xc[2], 2.0);
fhesd[2] = 10.0 + 48.0 * pow(xc[1] - 2.0 * xc[2], 2.0);
fhesd[3] = 10.0 + 120.0 * pow(xc[0] - xc[3], 2.0);
fhesl[0] = 20.0;
fhesl[1] = 0.0;

e04 – Minimizing or Maximizing a Function e04hdc

Mark 26 e04hdc.7

fhesl[2] = -24.0 * pow(xc[1] - 2.0 * xc[2], 2.0);
fhesl[3] = -120.0 * pow(xc[0] - xc[3], 2.0);
fhesl[4] = 0.0;
fhesl[5] = -10.0;

}

10.2 Program Data

None.

10.3 Program Results

nag_opt_check_2nd_deriv (e04hdc) Example Program Results

The test point is
1.4600 -0.8200 0.5700 1.2100

(User-supplied callback funct, first invocation.)
(User-supplied callback h, first invocation.)

2nd derivatives are consistent with 1st derivatives.

At the test point, funct gives the function value, 6.2273e+01
and the 1st derivatives

-1.285e+01 -1.649e+02 5.384e+01 5.775e+00

h gives the lower triangle of the Hessian matrix
9.500e+00
2.000e+01 2.461e+02
0.000e+00 -9.220e+01 1.944e+02

-7.500e+00 0.000e+00 -1.000e+01 1.750e+01

e04hdc NAG Library Manual

e04hdc.8 (last) Mark 26

	e04hdc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	n
	objfun
	n
	x
	objf
	g
	comm
	flag
	first
	nf
	user
	iuser
	p

	hessfun
	n
	x
	h
	hd
	comm
	flag
	first
	nf
	user
	iuser
	p

	x
	g
	hesl
	hesd
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_DERIV_ERRORS
	NE_INT_ARG_LT
	NE_USER_STOP

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

