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1 Scope of the Chapter

The main aim of this chapter is to assist you in finding a function which approximates a set of data
points. Typically the data contain random errors, as of experimental measurement, which need to be
smoothed out. To seek an approximation to the data, it is first necessary to specify for the
approximating function a mathematical form (a polynomial, for example) which contains a number of
unspecified coefficients: the appropriate fitting function then derives for the coefficients the values
which provide the best fit of that particular form. The chapter deals mainly with curve and surface
fitting (i.e., fitting with functions of one and of two variables) when a polynomial or a cubic spline is
used as the fitting function, since these cover the most common needs. However, fitting with other
functions and/or more variables can be undertaken by means of general linear or nonlinear functions
(some of which are contained in other chapters) depending on whether the coefficients in the function
occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be
treated simply by first reading a suitable set of points from the graph.

The chapter also contains functions for evaluating, differentiating and integrating polynomial and spline
curves and surfaces, once the numerical values of their coefficients have been determined.

There is also a function for computing a Padé approximant of a mathematical function (see Sections 2.6
and 3.8).

2 Background to the Problems

2.1 Preliminary Considerations

In the curve-fitting problems considered in this chapter, we have a dependent variable y and an
independent variable x, and we are given a set of data points xr ; yrð Þ, for r ¼ 1; 2; . . . ;m. The
preliminary matters to be considered in this section will, for simplicity, be discussed in this context of
curve-fitting problems. In fact, however, these considerations apply equally well to surface and higher-
dimensional problems. Indeed, the discussion presented carries over essentially as it stands if, for these
cases, we interpret x as a vector of several independent variables and correspondingly each xr as a
vector containing the rth data value of each independent variable.

We wish, then, to approximate the set of data points as closely as possible with a specified function,
f xð Þ say, which is as smooth as possible: f xð Þ may, for example, be a polynomial. The requirements of
smoothness and closeness conflict, however, and a balance has to be struck between them. Most often,
the smoothness requirement is met simply by limiting the number of coefficients allowed in the fitting
function – for example, by restricting the degree in the case of a polynomial. Given a particular number
of coefficients in the function in question, the fitting functions of this chapter determine the values of
the coefficients such that the ‘distance’ of the function from the data points is as small as possible. The
necessary balance is struck when you compare a selection of such fits having different numbers of
coefficients. If the number of coefficients is too low, the approximation to the data will be poor. If the
number is too high, the fit will be too close to the data, essentially following the random errors and
tending to have unwanted fluctuations between the data points. Between these extremes, there is often a
group of fits all similarly close to the data points and then, particularly when least squares polynomials
are used, the choice is clear: it is the fit from this group having the smallest number of coefficients.

You are in effect minimizing the smoothness measure (i.e., the number of coefficients) subject to the
distance from the data points being acceptably small. Some of the functions, however, do this task
themselves. They use a different measure of smoothness (in each case one that is continuous) and
minimize it subject to the distance being less than a threshold specified by you. This is a much more
automatic process, requiring only some experimentation with the threshold.

2.1.1 Fitting criteria: norms

A measure of the above ‘distance’ between the set of data points and the function f xð Þ is needed. The
distance from a single data point xr; yrð Þ to the function can simply be taken as

�r ¼ yr � f xrð Þ; ð1Þ
and is called the residual of the point. (With this definition, the residual is regarded as a function of the
coefficients contained in f xð Þ; however, the term is also used to mean the particular value of �r which
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corresponds to the fitted values of the coefficients.) However, we need a measure of distance for the set
of data points as a whole. Three different measures are used in the different functions (which measure
to select, according to circumstances, is discussed later in this sub-section). With �r defined in (1), these
measures, or norms, are

Xm
r¼1

�rj j; ð2Þ
ffiffiffiffiffiffiffiffiffiffiffiXm
r¼1

�2r

s
; ð3Þ

and

max
r

�rj j; ð4Þ

respectively the ‘1 norm, the ‘2 norm and the ‘1 norm.

Minimization of one or other of these norms usually provides the fitting criterion, the minimization
being carried out with respect to the coefficients in the mathematical form used for f xð Þ: with respect to
the bi for example if the mathematical form is the power series in (8) below. The fit which results from
minimizing (2) is known as the ‘1 fit, or the fit in the ‘1 norm: that which results from minimizing (3) is
the ‘2 fit, the well-known least squares fit (minimizing (3) is equivalent to minimizing the square of (3),
i.e., the sum of squares of residuals, and it is the latter which is used in practice), and that from
minimizing (4) is the ‘1, or minimax, fit.

Strictly speaking, implicit in the use of the above norms are the statistical assumptions that the random
errors in the yr are independent of one another and that any errors in the xr are negligible by
comparison. From this point of view, the use of the ‘2 norm is appropriate when the random errors in
the yr have a Normal distribution, and the ‘1 norm is appropriate when they have a rectangular
distribution, as when fitting a table of values rounded to a fixed number of decimal places. The ‘1 norm
is appropriate when the error distribution has its frequency function proportional to the negative
exponential of the modulus of the normalized error – not a common situation.

However, it may be that you are indifferent to these statistical considerations, and simply seek a fit
which can be assessed by inspection, perhaps visually from a graph of the results. In this event, the ‘1
norm is particularly appropriate when the data are thought to contain some ‘wild’ points (since fitting in
this norm tends to be unaffected by the presence of a small number of such points), though of course in
simple situations you may prefer to identify and reject these points. The ‘1 norm should be used only
when the maximum residual is of particular concern, as may be the case for example when the data
values have been obtained by accurate computation, as of a mathematical function. Generally, however,
a function based on least squares should be preferred, as being computationally faster and usually
providing more information on which to assess the results. In many problems the three fits will not
differ significantly for practical purposes.

Some of the functions based on the ‘2 norm do not minimize the norm itself but instead minimize some
(intuitively acceptable) measure of smoothness subject to the norm being less than a user-specified
threshold. These functions fit with cubic or bicubic splines (see (10) and (14) below) and the smoothing
measures relate to the size of the discontinuities in their third derivatives. A much more automatic
fitting procedure follows from this approach.

2.1.2 Weighting of data points

The use of the above norms also assumes that the data values yr are of equal (absolute) accuracy. Some
of the functions enable an allowance to be made to take account of differing accuracies. The allowance
takes the form of ‘weights’ applied to the y values so that those values known to be more accurate have
a greater influence on the fit than others. These weights, to be supplied by you, should be calculated
from estimates of the absolute accuracies of the y values, these estimates being expressed as standard
deviations, probable errors or some other measure which has the same dimensions as y. Specifically, for
each yr the corresponding weight wr should be inversely proportional to the accuracy estimate of yr.
For example, if the percentage accuracy is the same for all yr, then the absolute accuracy of yr is
proportional to yr (assuming yr to be positive, as it usually is in such cases) and so wr ¼ K=yr , for
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r ¼ 1; 2; . . . ;m, for an arbitrary positive constant K. (This definition of weight is stressed because often
weight is defined as the square of that used here.) The norms (2), (3) and (4) above are then replaced
respectively by

Xm
r¼1

wr�rj j; ð5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
r¼1

w2
r�

2
r

s
; ð6Þ

and

max
r

wr�rj j: ð7Þ

Again it is the square of (6) which is used in practice rather than (6) itself.

2.2 Curve Fitting

When, as is commonly the case, the mathematical form of the fitting function is immaterial to the
problem, polynomials and cubic splines are to be preferred because their simplicity and ease of
handling confer substantial benefits. The cubic spline is the more versatile of the two. It consists of a
number of cubic polynomial segments joined end to end with continuity in first and second derivatives
at the joins. The third derivative at the joins is in general discontinuous. The x values of the joins are
called knots, or, more precisely, interior knots. Their number determines the number of coefficients in
the spline, just as the degree determines the number of coefficients in a polynomial.

2.2.1 Representation of polynomials

Two different forms for representing a polynomial are used in different functions. One is the usual
power-series form

f xð Þ � b0 þ b1xþ b2x
2 þ � � � þ bkx

k: ð8Þ
The other is the Chebyshev series form

f xð Þ � 1
2a0T0 xð Þ þ a1T1 xð Þ þ a2T2 xð Þ þ � � � þ akTk xð Þ; ð9Þ

where Ti xð Þ is the Chebyshev polynomial of the first kind of degree i (see page 9 of Cox and Hayes
(1973)), and where the range of x has been normalized to run from �1 to þ1. The use of either form
leads theoretically to the same fitted polynomial, but in practice results may differ substantially because
of the effects of rounding error. The Chebyshev form is to be preferred, since it leads to much better
accuracy in general, both in the computation of the coefficients and in the subsequent evaluation of the
fitted polynomial at specified points. This form also has other advantages: for example, since the later
terms in (9) generally decrease much more rapidly from left to right than do those in (8), the situation is
more often encountered where the last terms are negligible and it is obvious that the degree of the
polynomial can be reduced (note that on the interval �1 � x � 1 for all i, Ti xð Þ attains the value unity
but never exceeds it, so that the coefficient ai gives directly the maximum value of the term containing
it). If the power-series form is used it is most advisable to work with the variable x normalized to the
range �1 to þ1, carrying out the normalization before entering the relevant function. This will often
substantially improve computational accuracy.

2.2.2 Representation of cubic splines

A cubic spline is represented in the form

f xð Þ � c1N1 xð Þ þ c2N2 xð Þ þ � � � þ cpNp xð Þ; ð10Þ
where Ni xð Þ, for i ¼ 1; 2; . . . ; p, is a normalized cubic B-spline (see Hayes (1974)). This form, also, has
advantages of computational speed and accuracy over alternative representations.

e02 – Curve and Surface Fitting Introduction – e02

Mark 26 e02.5



2.3 Surface Fitting

There are now two independent variables, and we shall denote these by x and y. The dependent
variable, which was denoted by y in the curve-fitting case, will now be denoted by f. (This is a rather
different notation from that indicated for the general-dimensional problem in the first paragraph of
Section 2.1, but it has some advantages in presentation.)

Again, in the absence of contrary indications in the particular application being considered, polynomials
and splines are the approximating functions most commonly used.

2.3.1 Representation of bivariate polynomials

The type of bivariate polynomial currently considered in the chapter can be represented in either of the
two forms

f x; yð Þ �
Xk
i¼0

X‘

j¼0

bijx
iyj; ð11Þ

and

f x; yð Þ �
Xk
i¼0

X‘

j¼0

aijTi xð ÞTj yð Þ; ð12Þ

where Ti xð Þ is the Chebyshev polynomial of the first kind of degree i in the parameter x (see page 9 of
Cox and Hayes (1973)), and correspondingly for Tj yð Þ. The prime on the two summation signs,
following standard convention, indicates that the first term in each sum is halved, as shown for one
variable in equation (9). The two forms (11) and (12) are mathematically equivalent, but again the
Chebyshev form is to be preferred on numerical grounds, as discussed in Section 2.2.1.

2.3.2 Bicubic splines: definition and representation

The bicubic spline is defined over a rectangle R in the x; yð Þ plane, the sides of R being parallel to the
x and y axes. R is divided into rectangular panels, again by lines parallel to the axes. Over each panel
the bicubic spline is a bicubic polynomial, that is it takes the form

X3
i¼0

X3
j¼0

aijx
iyj: ð13Þ

Each of these polynomials joins the polynomials in adjacent panels with continuity up to the second
derivative. The constant x values of the dividing lines parallel to the y-axis form the set of interior
knots for the variable x, corresponding precisely to the set of interior knots of a cubic spline. Similarly,
the constant y values of dividing lines parallel to the x-axis form the set of interior knots for the
variable y. Instead of representing the bicubic spline in terms of the above set of bicubic polynomials,
however, it is represented, for the sake of computational speed and accuracy, in the form

f x; yð Þ ¼
Xp
i¼1

Xq
j¼1

cijMi xð ÞNj yð Þ; ð14Þ

where Mi xð Þ, for i ¼ 1; 2; . . . ; p, and Nj yð Þ, for j ¼ 1; 2; . . . ; q, are normalized B-splines (see Hayes and
Halliday (1974) for further details of bicubic splines and Hayes (1974) for normalized B-splines).

2.4 General Linear and Nonlinear Fitting Functions

We have indicated earlier that, unless the data-fitting application under consideration specifically
requires some other type of fit, a polynomial or a spline is usually to be preferred. Special functions for
these types, in one and in two variables, are provided in this chapter. When the application does specify
some other form of fitting, however, it may be treated by a function which deals with a general linear
function, or by one for a general nonlinear function, depending on whether the coefficients occur
linearly or nonlinearly.
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The general linear fitting function can be written in the form

f xð Þ � c1�1 xð Þ þ c2�2 xð Þ þ � � � þ cp�p xð Þ; ð15Þ
where x is a vector of one or more independent variables, and the �i are any given functions of these
variables (though they must be linearly independent of one another if there is to be the possibility of a
unique solution to the fitting problem). This is not intended to imply that each �i is necessarily a
function of all the variables: we may have, for example, that each �i is a function of a different single
variable, and even that one of the �i is a constant. All that is required is that a value of each �i xð Þ can
be computed when a value of each independent variable is given.

When the fitting function f xð Þ is not linear in its coefficients, no more specific representation is
available in general than f xð Þ itself. However, we shall find it helpful later on to indicate the fact that
f xð Þ contains a number of coefficients (to be determined by the fitting process) by using instead the
notation f x; cð Þ, where c denotes the vector of coefficients. An example of a nonlinear fitting function is

f x; cð Þ � c1 þ c2 exp �c4xð Þ þ c3 exp �c5xð Þ; ð16Þ
which is in one variable and contains five coefficients. Note that here, as elsewhere in this Chapter
Introduction, we use the term ‘coefficients’ to include all the quantities whose values are to be
determined by the fitting process, not just those which occur linearly. We may observe that it is only the
presence of the coefficients c4 and c5 which makes the form (16) nonlinear. If the values of these two
coefficients were known beforehand, (16) would instead be a linear function which, in terms of the
general linear form (15), has p ¼ 3 and

�1 xð Þ � 1; �2 xð Þ � exp �c4xð Þ; and �3 xð Þ � exp �c5xð Þ:
We may note also that polynomials and splines, such as (9) and (14), are themselves linear in their
coefficients. Thus if, when fitting with these functions, a suitable special function is not available (as
when more than two independent variables are involved or when fitting in the ‘1 norm), it is appropriate
to use a function designed for a general linear function.

2.5 Constrained Problems

So far, we have considered only fitting processes in which the values of the coefficients in the fitting
function are determined by an unconstrained minimization of a particular norm. Some fitting problems,
however, require that further restrictions be placed on the determination of the coefficient values.
Sometimes these restrictions are contained explicitly in the formulation of the problem in the form of
equalities or inequalities which the coefficients, or some function of them, must satisfy. For example, if
the fitting function contains a term A exp �kxð Þ, it may be required that k � 0. Often, however, the
equality or inequality constraints relate to the value of the fitting function or its derivatives at specified
values of the independent variable(s), but these too can be expressed in terms of the coefficients of the
fitting function, and it is appropriate to do this if a general linear or nonlinear function is being used.
For example, if the fitting function is that given in (10), the requirement that the first derivative of the
function at x ¼ x0 be non-negative can be expressed as

c1N
0
1 x0ð Þ þ c2N

0
2 x0ð Þ þ � � � þ cpN

0
p x0ð Þ � 0; ð17Þ

where the prime denotes differentiation with respect to x and each derivative is evaluated at x ¼ x0. On
the other hand, if the requirement had been that the derivative at x ¼ x0 be exactly zero, the inequality
sign in (17) would be replaced by an equality.

Functions which provide a facility for minimizing the appropriate norm subject to such constraints are
discussed in Section 3.6.

2.6 Padé Approximants

A Padé approximant to a function f xð Þ is a rational function (ratio of two polynomials) whose
Maclaurin series expansion is the same as that of f xð Þ up to and including the term in xk, where k is
the sum of the degrees of the numerator and denominator of the approximant. Padé approximation can
be a useful technique when values of a function are to be obtained from its Maclaurin series but
convergence of the series is unacceptably slow or even nonexistent.
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3 Recommendations on Choice and Use of Available Functions

3.1 General

The choice of a function to treat a particular fitting problem will depend first of all on the fitting
function and the norm to be used. Unless there is good reason to the contrary, the fitting function should
be a polynomial or a cubic spline (in the appropriate number of variables) and the norm should be the
‘2 norm (leading to the least squares fit). If some other function is to be used, the choice of function
will depend on whether the function is nonlinear (in which case see Section 3.5.2) or linear in its
coefficients (see Section 3.5.1), and, in the latter case, on whether the ‘1, ‘2 or ‘1 norm is to be used.
The latter section is appropriate for polynomials and splines, too, if the ‘1 or ‘1 norm is preferred, with
one exception: there is a special function for fitting polynomial curves in the unweighted ‘1 norm (see
Section 3.2.3).

In the case of a polynomial or cubic spline, if there is only one independent variable, you should choose
a spline (see Section 3.3) when the curve represented by the data is of complicated form, perhaps with
several peaks and troughs. When the curve is of simple form, first try a polynomial (see Section 3.2) of
low degree, say up to degree 5 or 6, and then a spline if the polynomial fails to provide a satisfactory
fit. (Of course, if third-derivative discontinuities are unacceptable, a polynomial is the only choice.) If
the problem is one of surface fitting, the polynomial function (see Section 3.4.1) should be tried first if
the data arrangement happens to be appropriate, otherwise one of the spline functions (see
Section 3.4.3). If the problem has more than two independent variables, it may be treated by the
general linear function in Section 3.5.1, again using a polynomial in the first instance.

Another factor which affects the choice of function is the presence of constraints, as previously
discussed on Section 2.5. Indeed this factor is likely to be overriding at present, because of the limited
number of functions which have the necessary facility. Consequently those functions have been grouped
together for discussion in Section 3.6.

3.1.1 Data considerations

A satisfactory fit cannot be expected by any means if the number and arrangement of the data points do
not adequately represent the character of the underlying relationship: sharp changes in behaviour, in
particular, such as sharp peaks, should be well covered. Data points should extend over the whole range
of interest of the independent variable(s): extrapolation outside the data ranges is most unwise. Then,
with polynomials, it is advantageous to have additional points near the ends of the ranges, to counteract
the tendency of polynomials to develop fluctuations in these regions. When, with polynomial curves,
you can precisely choose the x values of the data, the special points defined in Section 3.2.2 should be
selected. With polynomial surfaces, each of these same x values should, where possible, be combined
with each of a corresponding set of y values (not necessarily with the same value of n), thus forming a
rectangular grid of x; yð Þ-values. With splines the choice is less critical as long as the character of the
relationship is adequately represented. All fits should be tested graphically before accepting them as
satisfactory.

For this purpose it should be noted that it is not sufficient to plot the values of the fitted function only at
the data values of the independent variable(s); at the least, its values at a similar number of intermediate
points should also be plotted, as unwanted fluctuations may otherwise go undetected. Such fluctuations
are the less likely to occur the lower the number of coefficients chosen in the fitting function. No firm
guide can be given, but as a rough rule, at least initially, the number of coefficients should not exceed
half the number of data points (points with equal or nearly equal values of the independent variable, or
both independent variables in surface fitting, counting as a single point for this purpose). However, the
situation may be such, particularly with a small number of data points, that a satisfactorily close fit to
the data cannot be achieved without unwanted fluctuations occurring. In such cases, it is often possible
to improve the situation by a transformation of one or more of the variables, as discussed in the next
section: otherwise it will be necessary to provide extra data points. Further advice on curve-fitting is
given in Cox and Hayes (1973) and, for polynomials only, in Hayes (1970). Much of the advice applies
also to surface fitting; see also the function documents.
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3.1.2 Transformation of variables

Before starting the fitting, consideration should be given to the choice of a good form in which to deal
with each of the variables: often it will be satisfactory to use the variables as they stand, but sometimes
the use of the logarithm, square root, or some other function of a variable will lead to a better-behaved
relationship. This question is customarily taken into account in preparing graphs and tables of a
relationship and the same considerations apply when curve or surface fitting. The practical context will
often give a guide. In general, it is best to avoid having to deal with a relationship whose behaviour in
one region is radically different from that in another. A steep rise at the left-hand end of a curve, for
example, can often best be treated by curve-fitting in terms of log xþ cð Þ with some suitable value of
the constant c. A case when such a transformation gave substantial benefit is discussed in page 60 of
Hayes (1970). According to the features exhibited in any particular case, transformation of either
dependent variable or independent variable(s) or both may be beneficial. When there is a choice it is
usually better to transform the independent variable(s): if the dependent variable is transformed, the
weights attached to the data points must be adjusted. Thus (denoting the dependent variable by y, as in
the notation for curves) if the yr to be fitted have been obtained by a transformation y ¼ g Yð Þ from
original data values Yr, with weights Wr , for r ¼ 1; 2; . . . ;m, we must take

wr ¼ Wr= dy=dYð Þ; ð18Þ
where the derivative is evaluated at Yr. Strictly, the transformation of Y and the adjustment of weights
are valid only when the data errors in the Yr are small compared with the range spanned by the Yr, but
this is usually the case.

3.2 Polynomial Curves

3.2.1 Least squares polynomials: arbitrary data points

nag_1d_cheb_fit (e02adc) fits to arbitrary data points, with arbitrary weights, polynomials of all degrees
up to a maximum degree k, which is a choice. If you are seeking only a low-degree polynomial, up to
degree 5 or 6 say, k ¼ 10 is an appropriate value, providing there are about 20 data points or more. To
assist in deciding the degree of polynomial which satisfactorily fits the data, the function provides the
root-mean-square residual si for all degrees i ¼ 1; 2; . . . ; k. In a satisfactory case, these si will decrease
steadily as i increases and then settle down to a fairly constant value, as shown in the example

i si
0 3:5215
1 0:7708
2 0:1861
3 0:0820
4 0:0554
5 0:0251
6 0:0264
7 0:0280
8 0:0277
9 0:0297

10 0:0271

If the si values settle down in this way, it indicates that the closest polynomial approximation justified
by the data has been achieved. The degree which first gives the approximately constant value of si
(degree 5 in the example) is the appropriate degree to select. (If you are prepared to accept a fit higher
than sixth degree you should simply find a high enough value of k to enable the type of behaviour
indicated by the example to be detected: thus you should seek values of k for which at least 4 or 5
consecutive values of si are approximately the same.) If the degree were allowed to go high enough, si
would, in most cases, eventually start to decrease again, indicating that the data points are being fitted
too closely and that undesirable fluctuations are developing between the points. In some cases,
particularly with a small number of data points, this final decrease is not distinguishable from the initial
decrease in si. In such cases, you may seek an acceptable fit by examining the graphs of several of the
polynomials obtained. Failing this, you may (a) seek a transformation of variables which improves the
behaviour, (b) try fitting a spline, or (c) provide more data points. If data can be provided simply by
drawing an approximating curve by hand and reading points from it, use the points discussed in
Section 3.2.2.
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3.2.2 Least squares polynomials: selected data points

When you are at liberty to choose the x values of data points, such as when the points are taken from a
graph, it is most advantageous when fitting with polynomials to use the values xr ¼ cos �r=nð Þ, for
r ¼ 0; 1; . . . ; n for some value of n, a suitable value for which is discussed at the end of this section.
Note that these xr relate to the variable x after it has been normalized so that its range of interest is �1
to þ1. nag_1d_cheb_fit (e02adc) may then be used as in Section 3.2.1 to seek a satisfactory fit.
However, if the ordinate values are of equal weight, as would often be the case when they are read from
a graph, nag_1d_cheb_interp_fit (e02afc) is to be preferred, as being simpler to use and faster. This
latter algorithm provides the coefficients aj , for j ¼ 0; 1; . . . ; n, in the Chebyshev series form of the
polynomial of degree n which interpolates the data. In a satisfactory case, the later coefficients in this
series, after some initial significant ones, will exhibit a random behaviour, some positive and some
negative, with a size about that of the errors in the data or less. All these ‘random’ coefficients should
be discarded, and the remaining (initial) terms of the series be taken as the approximating polynomial.
This truncated polynomial is a least squares fit to the data, though with the point at each end of the
range given half the weight of each of the other points. The following example illustrates a case in
which degree 5 or perhaps 6 would be chosen for the approximating polynomial.

j aj
0 9:315
1 �8:030
2 0:303
3 �1:483
4 0:256
5 �0:386
6 0:076
7 0:022
8 0:014
9 0:005

10 0:011
11 �0:040
12 0:017
13 �0:054
14 0:010
15 �0:034
16 �0:001

Basically, the value of n used needs to be large enough to exhibit the type of behaviour illustrated in
the above example. A value of 16 is suggested as being satisfactory for very many practical problems,
the required cosine values for this value of n being given on page 11 of Cox and Hayes (1973). If a
satisfactory fit is not obtained, a spline fit should be tried, or, if you are prepared to accept a higher
degree of polynomial, n should be increased: doubling n is an advantageous strategy, since the set of
values cos �r=nð Þ, for r ¼ 0; 1; . . . ; n, contains all the values of cos �r=2nð Þ, for r ¼ 0; 1; . . . ; n, so that
the old dataset will then be re-used in the new one. Thus, for example, increasing n from 16 to 32 will
require only 16 new data points, a smaller number than for any other increase of n. If data points are
particularly expensive to obtain, a smaller initial value than 16 may be tried, provided you are satisfied
that the number is adequate to reflect the character of the underlying relationship. Again, the number
should be doubled if a satisfactory fit is not obtained.

3.2.3 Minimax space polynomials

The polynomial of chosen degree which is a minimax space fit to arbitrary data points, with possibly
unequal weights, can be determined by treating the polynomial as a general linear function and fitting
with nag_linf_fit (e02gcc). To arrive at a satisfactory degree it will be necessary to try several different
degrees and examine the results graphically. Initial guidance can be obtained from the value of the
maximum residual: this will vary with the degree of the polynomial in very much the same way as does
si in least squares fitting, but it is much more expensive to investigate this behaviour in the same detail.
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3.3 Cubic Spline Curves

3.3.1 Least squares cubic splines

nag_1d_spline_fit_knots (e02bac) fits to arbitrary data points, with arbitrary weights, a cubic spline with
interior knots specified by you. The choice of these knots so as to give an acceptable fit must largely be
a matter of trial and error, though with a little experience a satisfactory choice can often be made after
one or two trials. It is usually best to start with a small number of knots (too many will result in
unwanted fluctuations in the fit, or even in there being no unique solution) and, examining the fit
graphically at each stage, to add a few knots at a time at places where the fit is particularly poor.
Moving the existing knots towards these places will also often improve the fit. In regions where the
behaviour of the curve underlying the data is changing rapidly, closer knots will be needed than
elsewhere. Otherwise, positioning is not usually very critical and equally-spaced knots are often
satisfactory. See also the next section, however.

A useful feature of the function is that it can be used in applications which require the continuity to be
less than the normal continuity of the cubic spline. For example, the fit may be required to have a
discontinuous slope at some point in the range. This can be achieved by placing three coincident knots
at the given point. Similarly a discontinuity in the second derivative at a point can be achieved by
placing two knots there. Analogy with these discontinuous cases can provide guidance in more usual
cases: for example, just as three coincident knots can produce a discontinuity in slope, so three close
knots can produce a rapid change in slope. The closer the knots are, the more rapid can the change be.

An example set of data is given in Figure 1. It is a rather tricky set, because of the scarcity of data on
the right, but it will serve to illustrate some of the above points and to show some of the dangers to be
avoided. Three interior knots (indicated by the vertical lines at the top of the diagram) are chosen as a
start. We see that the resulting curve is not steep enough in the middle and fluctuates at both ends,
severely on the right. The spline is unable to cope with the shape and more knots are needed.
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Figure 2
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Figure 3

In Figure 2, three knots have been added in the centre, where the data shows a rapid change in
behaviour, and one further out at each end, where the fit is poor. The fit is still poor, so a further knot is
added in this region and, in Figure 3, disaster ensues in rather spectacular fashion.

The reason is that, at the right-hand end, the fits in Figures 1 and 2 have been interpreted as poor
simply because of the fluctuations about the curve underlying the data (or what it is naturally assumed
to be). But the fitting process knows only about the data and nothing else about the underlying curve, so
it is important to consider only closeness to the data when deciding goodness-of-fit.

Thus, in Figure 1, the curve fits the last two data points quite well compared with the fit elsewhere, so
no knot should have been added in this region. In Figure 2, the curve goes exactly through the last two
points, so a further knot is certainly not needed here.

Figure 4 shows what can be achieved without the extra knot on each of the flat regions. Remembering
that within each knot interval the spline is a cubic polynomial, there is really no need to have more than
one knot interval covering each flat region.
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Figure 4

What we have, in fact, in Figures 2 and 3 is a case of too many knots (so too many coefficients in the
spline equation) for the number of data points. The warning in the second paragraph of Section 2.1 was
that the fit will then be too close to the data, tending to have unwanted fluctuations between the data
points. The warning applies locally for splines, in the sense that, in localities where there are plenty of
data points, there can be a lot of knots, as long as there are few knots where there are few points,
especially near the ends of the interval. In the present example, with so few data points on the right,
just the one extra knot in Figure 2 is too many! The signs are clearly present, with the last two points
fitted exactly (at least to the graphical accuracy and actually much closer than that) and fluctuations
within the last two knot-intervals (see Figure 1, where only the final point is fitted exactly and one of
the wobbles spans several data points).

The situation in Figure 3 is different. The fit, if computed exactly, would still pass through the last two
data points, with even more violent fluctuations. However, the problem has become so ill-conditioned
that all accuracy has been lost. Indeed, if the last interior knot were moved a tiny amount to the right,
there would be no unique solution and an error message would have been caused. Near-singularity is,
sadly, not picked up by the function, but can be spotted readily in a graph, as Figure 3. B-spline
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coefficients becoming large, with alternating signs, is another indication. However, it is better to avoid
such situations, firstly by providing, whenever possible, data adequately covering the range of interest,
and secondly by placing knots only where there is a reasonable amount of data.

The example here could, in fact, have utilized from the start the observation made in the second
paragraph of this section, that three close knots can produce a rapid change in slope. The example has
two such rapid changes and so requires two sets of three close knots (in fact, the two sets can be so
close that one knot can serve in both sets, so only five knots prove sufficient in Figure 4). It should be
noted, however, that the rapid turn occurs within the range spanned by the three knots. This is the
reason that the six knots in Figure 2 are not satisfactory as they do not quite span the two turns.

Some more examples to illustrate the choice of knots are given in Cox and Hayes (1973).

3.3.2 Automatic fitting with cubic splines

nag_1d_spline_fit (e02bec) fits cubic splines to arbitrary data points with arbitrary weights but itself
chooses the number and positions of the knots. You have to supply only a threshold for the sum of
squares of residuals. The function first builds up a knot set by a series of trial fits in the ‘2 norm. Then,
with the knot set decided, the final spline is computed to minimize a certain smoothing measure subject
to satisfaction of the chosen threshold. Thus it is easier to use than nag_1d_spline_fit_knots (e02bac)
(see the previous section), requiring only some experimentation with this threshold. It should therefore
be first choice unless you have a preference for the ordinary least squares fit or, for example, if you
wish to experiment with knot positions, trying to keep their number down (nag_1d_spline_fit (e02bec)
aims only to be reasonably frugal with knots).

3.4 Polynomial and Spline Surfaces

3.4.1 Least squares polynomials

nag_2d_cheb_fit_lines (e02cac) fits bivariate polynomials of the form (12), with k and ‘ specified by
you, to data points in a particular, but commonly occurring, arrangement. This is such that, when the
data points are plotted in the plane of the independent variables x and y, they lie on lines parallel to the
x-axis. Arbitrary weights are allowed. The matter of choosing satisfactory values for k and ‘ is
discussed in Section 9 in nag_2d_cheb_fit_lines (e02cac).

3.4.2 Least squares bicubic splines

nag_2d_spline_fit_panel (e02dac) fits to arbitrary data points, with arbitrary weights, a bicubic spline
with its two sets of interior knots specified by you. For choosing these knots, the advice given for cubic
splines, in Section 3.3.1 above, applies here too (see also the next section, however). If changes in the
behaviour of the surface underlying the data are more marked in the direction of one variable than of
the other, more knots will be needed for the former variable than the latter. Note also that, in the surface
case, the reduction in continuity caused by coincident knots will extend across the whole spline surface:
for example, if three knots associated with the variable x are chosen to coincide at a value L, the spline
surface will have a discontinuous slope across the whole extent of the line x ¼ L.

With some sets of data and some choices of knots, the least squares bicubic spline will not be unique.
This will not occur, with a reasonable choice of knots, if the rectangle R is well covered with data
points: here R is defined as the smallest rectangle in the x; yð Þ plane, with sides parallel to the axes,
which contains all the data points. Where the least squares solution is not unique, the minimal least
squares solution is computed, namely that least squares solution which has the smallest value of the
sum of squares of the B-spline coefficients cij (see the end of Section 2.3.2 above). This choice of least
squares solution tends to minimize the risk of unwanted fluctuations in the fit. The fit will not be
reliable, however, in regions where there are few or no data points.

3.4.3 Automatic fitting with bicubic splines

nag_2d_spline_fit_scat (e02ddc) fits bicubic splines to arbitrary data points with arbitrary weights but
chooses the knot sets itself. You have to supply only a threshold for the sum of squares of residuals.
Just like the automatic curve, nag_1d_spline_fit (e02bec) (see Section 3.3.2), nag_2d_spline_fit_scat
(e02ddc) then builds up the knot sets and finally fits a spline minimizing a smoothing measure subject
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to satisfaction of the threshold. Again, this easier to use function is normally to be preferred, at least in
the first instance.

nag_2d_spline_fit_grid (e02dcc) is a very similar function to nag_2d_spline_fit_scat (e02ddc) but deals
with data points of equal weight which lie on a rectangular mesh in the x; yð Þ plane. This kind of data
allows a very much faster computation and so is to be preferred when applicable. Substantial departures
from equal weighting can be ignored if you are not concerned with statistical questions, though the
quality of the fit will suffer if this is taken too far. In such cases, you should revert to
nag_2d_spline_fit_scat (e02ddc).

3.4.4 Large data sets

For fitting large sets of equally weighted, arbitrary data points, nag_2d_spline_fit_ts_scat (e02jdc)
provides a two stage method where local, least squares, polynomial fits are extended to form a C1

surface.

3.5 General Linear and Nonlinear Fitting Functions

3.5.1 General linear functions

For the general linear function (15), functions are available for fitting in all three norms. The least
squares methods (which are to be preferred unless there is good reason to use another norm – see
Section 2.1.1) are discussed in Section 2.2.2 in the f08 Chapter Introduction (and see e.g., nag_dgeqrf
(f08aec)). The ‘1 function is nag_linf_fit (e02gcc) and, for the ‘1 norm nag_lone_fit (e02gac) is
provided.

All the above functions are essentially linear algebra functions, and in considering their use we need to
view the fitting process in a slightly different way from hitherto. Taking y to be the dependent variable
and x the vector of independent variables, we have, as for equation (1) but with each xr now a vector,

�r ¼ yr � f xrð Þ; r ¼ 1; 2; . . . ;m:

Substituting for f xð Þ the general linear form (15), we can write this as

c1�1 xrð Þ þ c2�2 xrð Þ þ � � � þ cp�p xrð Þ ¼ yr � �r; r ¼ 1; 2; . . . ;m: ð19Þ
Thus we have a system of linear equations in the coefficients cj. Usually, in writing these equations, the
�r are omitted and simply taken as implied. The system of equations is then described as an
overdetermined system (since we must have m � p if there is to be the possibility of a unique solution
to our fitting problem), and the fitting process of computing the cj to minimize one or other of the
norms (2), (3) and (4) can be described, in relation to the system of equations, as solving the
overdetermined system in that particular norm. In matrix notation, the system can be written as

�c ¼ y; ð20Þ
where � is the m by p matrix whose element in row r and column j is �j xrð Þ, for r ¼ 1; 2; . . . ;m and
j ¼ 1; 2; . . . ; p. The vectors c and y respectively contain the coefficients cj and the data values yr.

These functions, however, use the standard notation of linear algebra, the overdetermined system of
equations being denoted by

Ax ¼ b: ð21Þ
The correspondence between this notation and that which we have used for the data-fitting problem (20)
is therefore given by

A � �;
x � c;
b � y:

ð22Þ

Note that the norms used by these functions are the unweighted norms (2), (3) and (4). If you wish to
apply weights to the data points, that is to use the norms (5), (6) or (7), the equivalences (22) should be
replaced by
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A � D�;
x � c;
b � Dy;

where D is a diagonal matrix with wr as the rth diagonal element. Here wr , for r ¼ 1; 2; . . . ;m, is the
weight of the rth data point as defined in Section 2.1.2.

3.5.2 Nonlinear functions

Functions for fitting with a nonlinear function in the ‘2 norm are provided in Chapter e04. Consult the
e04 Chapter Introduction for the appropriate choice of function. Again, however, the notation adopted is
different from that we have used for data fitting. In the latter, we denote the fitting function by f x; cð Þ,
where x is the vector of independent variables and c is the vector of coefficients, whose values are to be
determined. The squared ‘2 norm, to be minimized with respect to the elements of c, is then

Xm
r¼1

w2
r yr � f xr; cð Þ½ �2 ð23Þ

where yr is the rth data value of the dependent variable, xr is the vector containing the rth values of the
independent variables, and wr is the corresponding weight as defined in Section 2.1.2.

On the other hand, in the nonlinear least squares functions of Chapter e04, the function to be minimized
is denoted by

Xm
i¼1

f2
i xð Þ; ð24Þ

the minimization being carried out with respect to the elements of the vector x. The correspondence
between the two notations is given by

x � c and fi xð Þ � wr yr � f xr; cð Þ½ �; i ¼ r ¼ 1; 2; . . . ;m:

Note especially that the vector x of variables of the nonlinear least squares functions is the vector c of
coefficients of the data-fitting problem, and in particular that, if the selected function requires
derivatives of the fi xð Þ to be provided, these are derivatives of wr yr � f xr; cð Þ½ � with respect to the
coefficients of the data-fitting problem.

3.6 Constraints

For fitting with polynomials in the ‘2 norm, subject to constraints, nag_1d_cheb_fit_constr (e02agc)
deals with polynomial curves and allows precise values of the fitting function and (if required) all its
derivatives up to a given order to be prescribed at one or more values of the independent variable. The
related surface-fitting nag_2d_cheb_fit_lines (e02cac), designed for data on lines as discussed in
Section 3.4.1, has a feature which permits precise values of the function and its derivatives to be
imposed all along one or more lines parallel to the x or y axes (see the function document for the
relationship between these normalized variables and your original variables). In this case, however, the
prescribed values cannot be supplied directly to the function: instead, you must provide modified data
ordinates Fr;s and polynomial factors �1 xð Þ and �2 xð Þ, as defined on page 95 of Hayes (1970).

3.7 Evaluation, Differentiation and Integration

Functions are available to evaluate, differentiate and integrate polynomials in Chebyshev series form
and cubic or bicubic splines in B-spline form. These polynomials and splines may have been produced
by the various fitting functions or, in the case of polynomials, from prior calls of the differentiation and
integration functions themselves.

nag_1d_cheb_eval (e02aec) and nag_1d_cheb_eval2 (e02akc) evaluate polynomial curves: the latter has
a longer argument list but does not require you to normalize the values of the independent variable and
can accept coefficients which are not stored in contiguous locations. nag_2d_cheb_eval (e02cbc)
evaluates polynomial surfaces, nag_1d_spline_evaluate (e02bbc) cubic spline curves, nag_2d_spline_e
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val (e02dec) and nag_2d_spline_eval_rect (e02dfc) bicubic spline surfaces, and nag_2d_spline_der
iv_rect (e02dhc) bicubic spline surfaces with derivatives.

Differentiation and integration of polynomial curves are carried out by nag_1d_cheb_deriv (e02ahc) and
nag_1d_cheb_intg (e02ajc) respectively. The results are provided in Chebyshev series form and so
repeated differentiation and integration are catered for. Values of the derivative or integral can then be
computed using the appropriate evaluation function. Polynomial surfaces can be treated by a sequence
of calls of one or other of the same two functions, differentiating or integrating the form (12) piece by
piece. For example, if, for some given value of j, the coefficients aij, for i ¼ 0; 1; . . . ; k, are supplied to
nag_1d_cheb_deriv (e02ahc), we obtain coefficients �aij say, for i ¼ 0; 1; . . . ; k� 1, which are the
coefficients in the derivative with respect to x of the polynomial

Xk
i¼0

aijTi xð Þ:

If this is repeated for all values of j, we obtain all the coefficients in the derivative of the surface with
respect to x, namely

Xk�1

i¼0

X‘

j¼0

�aijTj yð Þ: ð25Þ

The derivative of (12), or of (25), with respect to y can be obtained in a corresponding manner. In the
latter case, for example, for each value of i in turn we supply the coefficients �ai0; �ai1; �ai2; . . . , to the
function. Values of the resulting polynomials, such as (25), can subsequently be computed using
nag_2d_cheb_eval (e02cbc). It is important, however, to note one exception: the process described will
not give valid results for differentiating or integrating a surface with respect to y if the normalization of
x was made dependent upon y, an option which is available in the fitting function
nag_2d_cheb_fit_lines (e02cac).

For splines the differentiation and integration functions provided are of a different nature from those for
polynomials. nag_1d_spline_deriv (e02bcc) and nag_fit_1dspline_deriv_vector (e02bfc) provide values
of a cubic spline curve together with its first three derivatives (the rest, of course, are zero) at a given
value, or vector of values, of x. nag_1d_spline_intg (e02bdc) computes the value of the definite integral
of a cubic spline over its whole range. Again the functions can be applied to surfaces, this time of the
form (14). For example, if, for each value of j in turn, the coefficients cij, for i ¼ 1; 2; . . . ; p, are
supplied to nag_1d_spline_deriv (e02bcc) with x ¼ x0 and on each occasion we select from the output
the value of the second derivative, dj say, and if the whole set of dj are then supplied to the same
function with x ¼ y0, the output will contain all the values at x0; y0ð Þ of

@2f

@x2
and

@rþ2f

@x2@yr
; r ¼ 1; 2; 3:

Equally, if after each of the first p calls of nag_1d_spline_deriv (e02bcc) we had selected the function
value (nag_1d_spline_evaluate (e02bbc) would also provide this) instead of the second derivative and
we had supplied these values to nag_1d_spline_intg (e02bdc), the result obtained would have been the
value of Z B

A

f x0; yð Þ dy;

where A and B are the end points of the y interval over which the spline was defined.

3.8 Padé Approximants

Given two non-negative integers ‘ and m, and the coefficients in the Maclaurin series expansion of a
function up to degree ‘þm, nag_1d_pade (e02rac) calculates the Padé approximant of degree ‘ in the
numerator and degree m in the denominator. See Sections 3 and 10 in nag_1d_pade (e02rac) for further
advice.

nag_1d_pade_eval (e02rbc) is provided to compute values of the Padé approximant, once it has been
obtained.
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4 Decision Trees

Note: these Decision Trees are concerned with unconstrained fitting; for constrained fitting, consult
Section 3.6.

Tree 1

Do you have reason to
choose a type of fitting
function other than
polynomials or spline?

yes
Are the fitting functions
nonlinear? yes

See least squares functions
in Chapter e04

no

Do you prefer the ‘2 norm?
yes

See the least squares
functions in Chapter f08

no

Do you prefer the ‘1 norm?
yes

e02gac

no

Use the ‘1 norm, e02gcc

no

Does the problem have more
than two independent
variables?

yes

Do you have a reason to
prefer a norm other than the
‘2 norm?

yes
Do you prefer the ‘1 norm?

yes
e02gac

no

use ‘1 norm, e02gcc

no

See the least squares
functions in Chapter f08

no

Do you wish to use the ‘1
norm? yes

e02gac

no

Is there just one independent
variable (curve-fitting)? yes

Continue on Tree 2

no

Does the data have equal
weights? yes

Does the data lie on a
rectangular mesh? yes

e02dcc

no

e02jdc

no

Are the data on lines? (see
Section 3.4.1) yes

e02cac

no

e02ddc or e02dac
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Tree 2

Do you wish to use the ‘1 norm?
yes

e02alc, e02gcc

no

Do you prefer polynomials?
yes

Are the x values of data points different
from the values defined in Section 3.2.2
or cannot be chosen to be so?

yes
e02adc

no

Choose x values defined in
Section 3.2.2. Have data points different
weights?

yes
e02adc

no

e02afc

no

Do you wish to use ‘2 norm?
yes

e02bac

no

e02bec

5 Functionality Index

Automatic fitting,
with cubic splines ..................................................................................... nag_1d_spline_fit (e02bec)

Automatic knot placement,
with bicubic splines,

data on rectangular mesh ............................................................ nag_2d_spline_fit_grid (e02dcc)

Data on lines ........................................................................................... nag_2d_cheb_fit_lines (e02cac)

Data on rectangular mesh ...................................................................... nag_2d_spline_fit_grid (e02dcc)

Differentiation,
of bicubic splines ......................................................................... nag_2d_spline_deriv_rect (e02dhc)
of polynomials ........................................................................................ nag_1d_cheb_deriv (e02ahc)

Evaluation,
at a point,

of cubic splines ......................................................................... nag_1d_spline_evaluate (e02bbc)
of cubic splines and derivatives ..................................................... nag_1d_spline_deriv (e02bcc)

at vector of points,
of bicubic splines at vector of points ............................................. nag_2d_spline_eval (e02dec)
of C1 scattered fit ......................................................................... nag_2d_spline_ts_eval (e02jec)
of cubic splines and optionally derivatives .................... nag_fit_1dspline_deriv_vector (e02bfc)

of polynomials,
in one variable .................................................................................. nag_1d_cheb_eval2 (e02akc)
in one variable (simple interface) ...................................................... nag_1d_cheb_eval (e02aec)
in two variables .................................................................................. nag_2d_cheb_eval (e02cbc)

of rational functions ................................................................................. nag_1d_pade_eval (e02rbc)
on mesh,

of bicubic splines ...................................................................... nag_2d_spline_eval_rect (e02dfc)
of C1 scattered fit ................................................................. nag_2d_spline_ts_eval_rect (e02jfc)

Integration,
of cubic splines (definite integral) ........................................................ nag_1d_spline_intg (e02bdc)
of polynomials .......................................................................................... nag_1d_cheb_intg (e02ajc)

l1 fit,
with general linear function .............................................................................. nag_lone_fit (e02gac)

Least squares curve fit,
with cubic splines ........................................................................... nag_1d_spline_fit_knots (e02bac)
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with polynomials,
arbitrary data points ............................................................................... nag_1d_cheb_fit (e02adc)
selected data points ..................................................................... nag_1d_cheb_interp_fit (e02afc)
with constraints .......................................................................... nag_1d_cheb_fit_constr (e02agc)

Least squares surface fit,
with bicubic splines ....................................................................... nag_2d_spline_fit_panel (e02dac)
with polynomials ............................................................................... nag_2d_cheb_fit_lines (e02cac)

Minimax space fit,
with general linear function ............................................................................... nag_linf_fit (e02gcc)
with polynomials in one variable .......................................... nag_1d_minimax_polynomial (e02alc)

Padé approximants ................................................................................................. nag_1d_pade (e02rac)

Scattered data fit,
bicubic spline .................................................................................... nag_2d_spline_fit_scat (e02ddc)
C1 spline ....................................................................................... nag_2d_spline_fit_ts_scat (e02jdc)

Service functions,
general option getting function ..................................................................... nag_fit_opt_get (e02zlc)
general option setting function ..................................................................... nag_fit_opt_set (e02zkc)

Sorting ........................................................................................................... nag_2d_panel_sort (e02zac)

6 Auxiliary Functions Associated with Library Function Arguments

None.

7 Functions Withdrawn or Scheduled for Withdrawal

None.

8 References
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