
NAG Library Function Document

nag_fit_1dspline_deriv_vector (e02bfc)

1 Purpose

nag_fit_1dspline_deriv_vector (e02bfc) evaluates a cubic spline and up to its first three derivatives from
its B-spline representation at a vector of points. nag_fit_1dspline_deriv_vector (e02bfc) can be used to
compute the values and derivatives of cubic spline fits and interpolants produced by reference to
nag_1d_spline_interpolant (e01bac), nag_1d_spline_fit_knots (e02bac) and nag_1d_spline_fit (e02bec).

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_fit_1dspline_deriv_vector (Nag_SplineVectorSort start,
Nag_Spline *spline, Nag_DerivType deriv, Nag_Boolean xord,
const double x[], Integer ixloc[], Integer nx, double s[], Integer pds,
Integer iwrk[], Integer liwrk, NagError *fail)

3 Description

nag_fit_1dspline_deriv_vector (e02bfc) evaluates the cubic spline s xð Þ and optionally derivatives up to
order 3 for a vector of points xj , for j ¼ 1; 2; . . . ; nx. It is assumed that s xð Þ is represented in terms of
its B-spline coefficients ci, for i ¼ 1; 2; . . . ; �nþ 3, and (augmented) ordered knot set �i, for
i ¼ 1; 2; . . . ; �nþ 7, (see nag_1d_spline_fit_knots (e02bac) and nag_1d_spline_fit (e02bec)), i.e.,

s xð Þ ¼
Xq

i¼1

ciNi xð Þ:

Here q ¼ �nþ 3, �n is the number of intervals of the spline and Ni xð Þ denotes the normalized B-spline of
degree 3 (order 4) defined upon the knots �i; �iþ1; . . . ; �iþ4. The knots �5; �6; . . . ; ��nþ3 are the interior
knots. The remaining knots, �1, �2, �3, �4 and ��nþ4, ��nþ5, ��nþ6, � �nþ7 are the exterior knots. The knots
�4 and ��nþ4 are the boundaries of the spline.

Only abscissae satisfying,

�4 � xj � ��nþ4;

will be evaluated. At a simple knot �i (i.e., one satisfying �i�1 < �i < �iþ1), the third derivative of the
spline is, in general, discontinuous. At a multiple knot (i.e., two or more knots with the same value),
lower derivatives, and even the spline itself, may be discontinuous. Specifically, at a point x ¼ u where
(exactly) r knots coincide (such a point is termed a knot of multiplicity r), the values of the derivatives
of order 4� j, for j ¼ 1; 2; . . . ; r, are, in general, discontinuous. (Here 1 � r � 4; r > 4 is not
meaningful.) The maximum order of the derivatives to be evaluated Dord, and the left- or right-
handedness of the computation when an abscissa corresponds exactly to an interior knot, are determined
by the value of deriv.

Each abscissa (point at which the spline is to be evaluated) xj contained in x has an associated
enclosing interval number, ixlocj either supplied or returned in ixloc (see argument start). A simple call
to nag_fit_1dspline_deriv_vector (e02bfc) would set start ¼ Nag SplineVectorSort Sorted and the
contents of ixloc need never be set nor referenced, and the following description on modes of operation
can be ignored. However, where efficiency is an important consideration, the following description will
help to choose the appropriate mode of operation.

The interval numbers are used to determine which B-splines must be evaluated for a given abscissa, and
are defined as
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ixlocj ¼

� 0 xj < �1
4 �4 ¼ xj
k �k < xj < �kþ1
k �4 < �k ¼ xj left derivatives
k xj ¼ �kþ1 < ��nþ4 right derivatives or no derivatives
�nþ 4 ��nþ4 ¼ xj
> �nþ 7 xj > ��nþ7
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The algorithm has two modes of vectorization, termed here sorted and unsorted, which are selectable by
the argument start.

Furthermore, if the supplied abscissae are sufficiently ordered, as indicated by the argument xord, the
algorithm will take advantage of significantly faster methods for the determination of both the interval
numbers and the subsequent spline evaluations.

The sorted mode has two phases, a sorting phase and an evaluation phase. This mode is recommended
if there are many abscissae to evaluate relative to the number of intervals of the spline, or the abscissae
are distributed relatively densely over a subsection of the spline. In the first phase, ixlocj is determined
for each xj and a permutation is calculated to sort the xj by interval number. The first phase may be
either partially or completely by-passed using the argument start if the enclosing segments and/or the
subsequent ordering are already known a priori, for example if multiple spline coefficients spline!c
are to be evaluated over the same set of knots spline!lamda.

In the second phase of the sorted mode, spline approximations are evaluated by segment, so that non-
abscissa dependent calculations over a segment may be reused in the evaluation for all abscissae
belonging to a specific segment. For example, all third derivatives of all abscissae in the same segment
will be identical.

In the unsorted mode of vectorization, no a priori segment sorting is performed, and if the abscissae are
not sufficiently ordered, the evaluation at an abscissa will be independent of evaluations at other
abscissae; also non-abscissa dependent calculations over a segment will be repeated for each abscissa in
a segment. This may be quicker if the number of abscissa is small in comparison to the number of knots
in the spline, and they are distributed sparsely throughout the domain of the spline. This is effectively a
direct vectorization of nag_1d_spline_evaluate (e02bbc) and nag_1d_spline_deriv (e02bcc), although if
the enclosing interval numbers ixlocj are known, these may again be provided.

If the abscissae are sufficiently ordered, then once the first abscissa in a segment is known, an efficient
algorithm will be used to determine the location of the final abscissa in this segment. The spline will
subsequently be evaluated in a vectorized manner for all the abscissae indexed between the first and last
of the current segment.

If no derivatives are required, the spline evaluation is calculated by taking convex combinations due to
de Boor (1972). Otherwise, the calculation of s xð Þ and its derivatives is based upon,

(i) evaluating the nonzero B-splines of orders 1, 2, 3 and 4 by recurrence (see Cox (1972) and Cox
(1978)),

(ii) computing all derivatives of the B-splines of order 4 by applying a second recurrence to these
computed B-spline values (see de Boor (1972)),

(iii) multiplying the fourth-order B-spline values and their derivative by the appropriate B-spline
coefficients, and summing, to yield the values of s xð Þ and its derivatives.

The method of convex combinations is significantly faster than the recurrence based method. If higher
derivatives of order 2 or 3 are not required, as much computation as possible is avoided.

4 References

Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134–149

Cox M G (1978) The numerical evaluation of a spline from its B-spline representation J. Inst. Math.
Appl. 21 135–143

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62
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5 Arguments

1: start – Nag_SplineVectorSort Input

On entry: indicates the completion state of the first phase of the algorithm.

start ¼ Nag SplineVectorSort Sorted
The enclosing interval numbers ixlocj for the abscissae xj contained in x have not been
determined, and you wish to use the sorted mode of vectorization.

start ¼ Nag SplineVectorSort Sorted Indexed
The enclosing interval numbers ixlocj have been determined and are provided in ixloc,
however the required permutation and interval related information has not been determined
and you wish to use the sorted mode of vectorization.

start ¼ Nag SplineVectorSort Sorted Indexed Perm
You wish to use the sorted mode of vectorization, and the entire first phase has been
completed, with the enclosing interval numbers supplied in ixloc, and the required
permutation and interval related information provided in iwrk (from a previous call to
nag_fit_1dspline_deriv_vector (e02bfc)).

start ¼ Nag SplineVectorSort Unsorted
The enclosing interval numbers ixlocj for the abscissae xj contained in x have not been
determined, and you wish to use the unsorted mode of vectorization.

start ¼ Nag SplineVectorSort Unsorted Indexed
The enclosing interval numbers ixlocj for the abscissae xj contained in x have been
supplied in ixloc, and you wish to use the unsorted mode of vectorization.

C o n s t r a i n t : start ¼ Nag SplineVectorSort Sorted, Nag SplineVectorSort Sorted Indexed,
Nag SplineVectorSort Sorted Indexed Perm, Nag SplineVectorSort Unsorted o r
Nag SplineVectorSort Unsorted Indexed.

Additional: start ¼ Nag SplineVectorSort Sorted or Nag SplineVectorSort Unsorted should be
used unless you are sure that the knot set is unchanged between calls.

2: spline – Nag_Spline *

Pointer to structure of type Nag_Spline with the following members:

n – Integer Input

On entry: �nþ 7, where �n is the number of intervals of the spline (which is one greater
than the number of interior knots, i.e., the knots strictly within the range �4 to ��nþ4 over
which the spline is defined).

Constraint: spline!n � 8.

lamda – double * Input

On entry: a pointer to which memory of size spline!n must be allocated.
spline!lamda½k � 1� must be set to the value of the kth member of the complete set
of knots, �k , for k ¼ 1; 2; . . . ; �nþ 7.

C o n s t r a i n t : t h e �k m u s t b e i n n o n d e c r e a s i n g o r d e r w i t h
spline!lamda½spline!n� 4� > spline!lamda½3�.

c – double * Input

On entry: a pointer to which memory of size spline!n� 4 must be allocated. spline!c
holds the coefficient ci of the B-spline Ni xð Þ, for i ¼ 1; 2; . . . ; �nþ 3.

Under normal usage, the call to function nag_fit_1dspline_deriv_vector (e02bfc) will follow at
least one call to nag_1d_spline_interpolant (e01bac), nag_1d_spline_fit_knots (e02bac) or
nag_1d_spline_fit (e02bec)). In that case, the structure spline will have been set up correctly for
input to nag_fit_1dspline_deriv_vector (e02bfc). If multiple sets of B-spline co-efficients are
required for the same set of knots � and the same set of abscissae x, multiple calls to
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nag_fit_1dspline_deriv_vector (e02bfc) may be made with spline!c pointing to different
coefficient sets, with start set appropriately for efficiency.

3: deriv – Nag_DerivType Input

On entry: determines the maximum order of derivatives required, Dord, as well as the
computational behaviour when absicssae correspond exactly to interior knots.

For abscissae satisfying xj ¼ �4 or xj ¼ ��nþ4 only right-handed or left-handed computation will
be used respectively. For abscissae which do not coincide exactly with a knot, the handedness of
the computation is immaterial.

deriv ¼ Nag NoDerivs
No derivatives required. Dord ¼ 0. Only right-handed computation will be used at interior
knots.

deriv ¼ Nag LeftDerivs 1 or Nag RightDerivs 1
Only s xð Þ and its first derivative are required. Dord ¼ 1.

deriv ¼ Nag LeftDerivs 2 or Nag RightDerivs 2
Only s xð Þ and its first and second derivatives are required. Dord ¼ 2.

deriv ¼ Nag LeftDerivs 3 or Nag RightDerivs 3
s xð Þ and its first, second and third derivatives are required. Dord ¼ 3.

Constraint: deriv ¼ Nag NoDerivs, Nag LeftDerivs 1, Nag RightDerivs 1, Nag LeftDerivs 2,
Nag RightDerivs 2, Nag LeftDerivs 3 or Nag RightDerivs 3.

Additional: if left-handed computation of the spline s is required, a value of deriv must be
chosen which computes at least the first derivative in a left-handed manner. As mentioned in
Section 3, the handedness of the computation of s will only have an effect if at least 4 interior
knots are identical.

4: xord – Nag_Boolean Input

On entry: indicates whether x is supplied in a sufficiently ordered manner. If x is sufficiently
ordered nag_fit_1dspline_deriv_vector (e02bfc) will complete faster.

xord ¼ Nag TRUE
The abscissae in x are ordered at least by ascending interval, in that any two abscissae
contained in the same interval are only separated by abscissae in the same interval. For
example, xj < xjþ1, for j ¼ 1; 2; . . . ; nx� 1.

xord ¼ Nag FALSE
The abscissae in x are not sufficiently ordered.

5: x½nx� – const double Input

On entry: the abscissae xj , for j ¼ 1; 2; . . . ; nx. If start ¼ Nag SplineVectorSort Sorted or
Nag SplineVectorSort Unsorted then evaluations will only be performed for these xj satisfying
�4 � xj � ��nþ4. Otherwise evaluation will be performed unless the corresponding element of
ixloc contains an invalid interval number. Please note that if the ixloc½j� is a valid interval
number then no check is made that x½j� actually lies in that interval.

Cons t ra in t : a t l e a s t one absc i s s a mus t f a l l be tween spline!lamda 3½ � and
spline!lamda spline!n� 4½ �.

6: ixloc½nx� – Integer Input/Output

On entry: if start ¼ Nag SplineVectorSort Sorted Indexed,
Nag SplineVectorSort Sorted Indexed Perm or Nag SplineVectorSort Unsorted Indexed, if you
wish xj to be evaluated, ixloc½j� 1� must be the enclosing interval number ixlocj of the abscissae
xj (see (1)). If you do not wish xj to be evaluated, you may set the interval number to be either
less than 4 or greater than �nþ 4.

Otherwise, ixloc need not be set.
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On exit: if start ¼ Nag SplineVectorSort Sorted Indexed,
Nag SplineVectorSort Sorted Indexed Perm or Nag SplineVectorSort Unsorted Indexed, ixloc is
unchanged on exit.

Otherwise, ixloc½j � 1�, contains the enclosing interval number ixlocj, for the abscissa supplied in
x½j � 1�, for j ¼ 1; 2; . . . ; nx. Evaluations will only be performed for abscissae xj satisfying
�4 � xj � ��nþ4. If evaluation is not performed ixloc½j� 1� is set to 0 if xj < �4 or �nþ 7 if
xj > ��nþ4.

C o n s t r a i n t : i f start ¼ Nag SplineVectorSort Sorted Indexed,
Nag SplineVectorSort Sorted Indexed Perm or Nag SplineVectorSort Unsorted Indexed, at least
one element of ixloc must be between 4 and spline!n� 3.

7: nx – Integer Input

On entry: nx, the total number of abscissae contained in x, including any that will not be
evaluated.

Constraint: nx � 1.

8: s½dim� – double Output

Note: the dimension, dim, of the array s must be at least pds� ðDord þ 1Þ, see deriv for the
definition of Dord.

On exit: if xj is valid, S j; dð Þ will contain the (d � 1)th derivative of s xð Þ, for
d ¼ 1; 2; . . . ;Dord þ 1 and j ¼ 1; 2; . . . ; nx. In particular, S j; 1ð Þ will contain the approximation
of s xj

� �
for all legal values in x.

9: pds – Integer Input

On entry: the stride separating row elements in the two-dimensional data stored in the array s.

Constraint: pds � nx, regardless of the acceptability of the elements of x.

10: iwrk½liwrk� – Integer Input/Output

On entry: if start ¼ Nag SplineVectorSort Sorted Indexed Perm, iwrk must be unchanged from
a p r e v i o u s c a l l t o n a g _ fi t _ 1 d s p l i n e _ d e r i v _ v e c t o r ( e 0 2 b f c ) w i t h
start ¼ Nag SplineVectorSort Sorted or Nag SplineVectorSort Sorted Indexed.

Othe rwise , iwrk need no t be se t . Fur the rmore , iwrk may be NULL i f
start ¼ Nag SplineVectorSort Unsorted or Nag SplineVectorSort Unsorted Indexed.

On exit: if start ¼ Nag SplineVectorSort Unsorted or Nag SplineVectorSort Unsorted Indexed,
iwrk is unchanged on exit.

Otherwise, iwrk contains the required permutation of elements of x, if any, and information
related to the division of the abscissae xj between the intervals derived from spline!lamda.

11: liwrk – Integer Input

On entry: the dimension of the array iwrk.

Constraint: if start ¼ Nag SplineVectorSort Sorted, Nag SplineVectorSort Sorted Indexed or
Nag SplineVectorSort Sorted Indexed Perm, liwrk � 3þ 3� nx.

12: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).
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6 Error Indicators and Warnings

NE_ABSCI_OUTSIDE_KNOT_INTVL

On entry, all elements of x had enclosing interval numbers in ixloc outside the domain allowed
by the provided spline.
valueh i entries of x were indexed below the lower bound valueh i.
valueh i entries of x were indexed above the upper bound valueh i.

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further
information.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, nx ¼ valueh i.
Constraint: nx � 1.

On entry, spline!n ¼ valueh i.
Constraint: spline!n � 8.

NE_INT_2

On entry, liwrk ¼ valueh i.
Constraint: liwrk � 3� nxþ 3 ¼ valueh i.
On entry, pds ¼ valueh i.
Constraint: pds � nx ¼ valueh i.

NE_INT_CHANGED

On entry, start ¼ Nag SplineVectorSort Sorted Indexed Perm and nx is not consistent with the
previous call to nag_fit_1dspline_deriv_vector (e02bfc).
On entry, nx ¼ valueh i.
Constraint: nx ¼ valueh i.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_SPLINE_RANGE_INVALID

O n e n t r y , spline!lamda½3� ¼ valueh i, spline!n ¼ valueh i a n d
spline!lamda½spline!n� 4� ¼ valueh i.
Constraint: spline!lamda½3� < spline!lamda½spline!n� 4�.
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NW_SOME_SOLUTIONS

On entry, at least one element of x has an enclosing interval number in ixloc outside the set
allowed by the provided spline. The spline has been evaluated for all x with enclosing interval
numbers inside the allowable set.
valueh i entries of x were indexed below the lower bound valueh i.
valueh i entries of x were indexed above the upper bound valueh i.

7 Accuracy

The computed value of s xð Þ has negligible error in most practical situations. Specifically, this value has
an absolute error bounded in modulus by 18� cmax �machine precision, where cmax is the largest in
modulus of cj, cj þ 1, cj þ 2 and cj þ 3, and j is an integer such that �j þ 3 < x � �j þ 4. If cj, cj þ 1,
cj þ 2 and cj þ 3 are all of the same sign, then the computed value of s xð Þ has relative error bounded
by 20�machine precision. For full details see Cox (1978).

No complete error analysis is available for the computation of the derivatives of s xð Þ. However, for
most practical purposes the absolute errors in the computed derivatives should be small. Note that this
is in comparison to the derivatives of the spline, which may or may not be comparable to the
derivatives of the function that has been approximated by the spline.

8 Parallelism and Performance

nag_fit_1dspline_deriv_vector (e02bfc) is threaded by NAG for parallel execution in multithreaded
implementations of the NAG Library.

Please consult the x06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this function. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

If using the sorted mode of vectorization, the time required for the first phase to determine the
enclosing intervals is approximately proportional to O nxlog �nð Þð Þ. The time required to then generate
the required permutations and interval information is O nxð Þ if x is ordered sufficiently, or at worst
O nx min nx; �nð Þlog min nx; �nð Þð Þð Þ if x is not ordered. The time required by the second phase is then
proportional to O nxð Þ.
If using the unsorted mode of vectorization, the time required is proportional to O nxlog �nð Þð Þ if the
enclosing interval numbers are not provided, or O nxð Þ if they are provided. However, the repeated
calculation of various quantities will typically make this slower than the sorted mode when the ratio of
abscissae to knots is high, or the abscissae are densely distributed over a relatively small subset of the
intervals of the spline.

Note: the function does not test all the conditions on the knots given in the description of
spline!lamda in Section 5, since to do this would result in a computation time with a linear
dependency upon �n instead of log �nð Þ. All the conditions are tested in nag_1d_spline_fit_knots (e02bac)
and nag_1d_spline_fit (e02bec), however.

10 Example

This example fits a spline through a set of data points using nag_1d_spline_fit (e02bec) and then
evaluates the spline at a set of supplied abscissae.
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10.1 Program Text

/* nag_fit_1dspline_deriv_vector (e02bfc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{
#define S(I,J) s[(J-1)*pds + I-1]

Integer exit_status = 0;
double fp, sfac;
Integer pds, liwrk, m, nest, nx, d, j;
double *s = 0, *wdata = 0, *x = 0, *xdata = 0, *ydata = 0;
Integer *iwrk = 0, *ixloc = 0;
Nag_Comm warmstartinf;
Nag_Spline spline;
Nag_Start start_e02bec;
Nag_SplineVectorSort start;
Nag_Boolean xord;
Nag_DerivType deriv;
NagError fail;

printf("nag_fit_1dspline_deriv_vector (e02bfc) Example Program Results\n");

INIT_FAIL(fail);

/* Initialize spline */
spline.lamda = 0;
spline.c = 0;
warmstartinf.nag_w = 0;
warmstartinf.nag_iw = 0;

/* Skip heading in data file */
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Input the number of data points for the spline, */
/* followed by the data points (xdata), the function values (ydata) */
/* and the weights (wdata). */

#ifdef _WIN32
scanf_s("%" NAG_IFMT "", &m);

#else
scanf("%" NAG_IFMT "", &m);

#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

nest = m + 4;
if (m >= 4) {

if (!(wdata = NAG_ALLOC(m, double)) ||
!(xdata = NAG_ALLOC(m, double)) || !(ydata = NAG_ALLOC(m, double)))

{
printf("Allocation failure\n");
exit_status = -1;
goto END;

}
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}
else {

printf("Invalid m.\n");
exit_status = 1;
return exit_status;

}
start_e02bec = Nag_Cold;

for (j = 0; j < m; j++) {
#ifdef _WIN32

scanf_s("%lf", &xdata[j]);
#else

scanf("%lf", &xdata[j]);
#endif
#ifdef _WIN32

scanf_s("%lf", &ydata[j]);
#else

scanf("%lf", &ydata[j]);
#endif
#ifdef _WIN32

scanf_s("%lf", &wdata[j]);
#else

scanf("%lf", &wdata[j]);
#endif

}
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Read in the requested smoothing factor. */
#ifdef _WIN32

scanf_s("%lf", &sfac);
#else

scanf("%lf", &sfac);
#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Determine the spline approximation.
* nag_1d_spline_fit (e02bec).
* Least squares cubic spline curve fit, automatic knot placement,
* one variable.
*/

nag_1d_spline_fit(start_e02bec, m, xdata, ydata, wdata, sfac, nest,
&fp, &warmstartinf, &spline, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_1d_spline_fit (e02bec).\n%s\n", fail.message);
exit_status = 2;
goto END;

}

/* Read in the number of sample points requested. */
#ifdef _WIN32

scanf_s("%" NAG_IFMT "", &nx);
#else

scanf("%" NAG_IFMT "", &nx);
#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

/* Allocate memory for sample point locations and */
/* function and derivative approximations. */
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pds = nx;
liwrk = 3 + 3 * nx;
if (!(x = NAG_ALLOC(nx, double)) ||

!(s = NAG_ALLOC(pds * 4, double)) ||
!(ixloc = NAG_ALLOC(nx, Integer)) || !(iwrk = NAG_ALLOC(liwrk, Integer))

)
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read in sample points. */
for (j = 0; j < nx; j++)

#ifdef _WIN32
scanf_s("%lf", &x[j]);

#else
scanf("%lf", &x[j]);

#endif
#ifdef _WIN32

scanf_s("%*[^\n] ");
#else

scanf("%*[^\n] ");
#endif

xord = Nag_FALSE;
start = Nag_SplineVectorSort_Sorted;
deriv = Nag_RightDerivs_3;
/*
* nag_fit_1dspline_deriv_vector (e02bfc).
* Evaluation of fitted cubic spline, function and optionally derivatives
* at a vector of points.
*/

nag_fit_1dspline_deriv_vector(start, &spline, deriv, xord, x, ixloc, nx,
s, pds, iwrk, liwrk, &fail);

switch (fail.code) {
case NE_NOERROR:
case NW_SOME_SOLUTIONS:

{
/* Output the results. */
printf("\n");
printf(" x ixloc s(x) ");
printf(" ds/dx d2s/dx2 d3s/dx3\n");
for (j = 0; j < nx; j++) {

if (ixloc[j] >= 4 && ixloc[j] <= spline.n - 3) {
printf("%8.4f %7" NAG_IFMT " ", x[j], ixloc[j]);
for (d = 0; d < 4; d++)

printf("%12.4e ", S(j + 1, d + 1));
printf("\n");

}
else

printf("%f %" NAG_IFMT "\n", x[j], ixloc[j]);
}
break;

}
default:

{
printf("Error from nag_fit_1dspline_deriv_vector (e02bfc).\n%s\n",

fail.message);
exit_status = 3;
goto END;

}
}

END:

NAG_FREE(xdata);
NAG_FREE(ydata);
NAG_FREE(wdata);
NAG_FREE(warmstartinf.nag_w);
NAG_FREE(warmstartinf.nag_iw);
NAG_FREE(spline.lamda);
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NAG_FREE(spline.c);
NAG_FREE(x);
NAG_FREE(ixloc);
NAG_FREE(s);
NAG_FREE(iwrk);

return exit_status;
}

10.2 Program Data

nag_fit_1dspline_deriv_vector (e02bfc) Example Program Data
15 : M, the number of data points.
0.0000E+00 -1.1000E+00 1.00
5.0000E-01 -3.7200E-01 1.00
1.0000E+00 4.3100E-01 1.50
1.5000E+00 1.6900E+00 1.00
2.0000E+00 2.1100E+00 1.00
2.5000E+00 3.1000E+00 1.00
3.0000E+00 4.2300E+00 1.00
4.0000E+00 4.3500E+00 1.00
4.5000E+00 4.8100E+00 1.00
5.0000E+00 4.6100E+00 1.00
5.5000E+00 4.7900E+00 1.00
6.0000E+00 5.2300E+00 1.00
7.0000E+00 6.3500E+00 1.00
7.5000E+00 7.1900E+00 1.00
8.0000E+00 7.9700E+00 1.00 : xdata(1:m), ydata(1:m), wdata(1:m)
0.001 : S, smoothing factor.

20 : NX, the number of evaluation points.
6.5178 7.2463 1.0159 7.3070
5.0589 0.7803 2.2280 4.3751
7.6601 7.7191 1.2609 7.7647
7.6573 3.8830 6.4022 1.1351
3.3741 7.3259 6.3377 7.6759 : Unordered evaluation points x(1:nx).

10.3 Program Results

nag_fit_1dspline_deriv_vector (e02bfc) Example Program Results

x ixloc s(x) ds/dx d2s/dx2 d3s/dx3
6.5178 14 5.7418e+00 1.0741e+00 5.6736e-01 1.3065e+00
7.2463 15 6.7486e+00 1.7074e+00 4.9054e-01 -2.8697e+00
1.0159 5 4.7469e-01 2.4179e+00 3.8175e+00 -2.2171e+01
7.3070 15 6.8531e+00 1.7319e+00 3.1634e-01 -2.8697e+00
5.0589 12 4.6105e+00 -1.0363e-01 2.9075e+00 -4.4467e+00
0.7803 4 6.6885e-03 1.6216e+00 2.5007e+00 7.5980e+00
2.2280 7 2.4751e+00 1.9559e+00 3.0615e+00 -6.6690e+00
4.3751 10 4.7199e+00 8.5194e-01 -3.0718e+00 -1.9866e+01
7.6601 15 7.4633e+00 1.6647e+00 -6.9696e-01 -2.8697e+00
7.7191 15 7.5602e+00 1.6186e+00 -8.6627e-01 -2.8697e+00
1.2609 5 1.1273e+00 2.6878e+00 -1.6146e+00 -2.2171e+01
7.7647 15 7.6330e+00 1.5761e+00 -9.9713e-01 -2.8697e+00
7.6573 15 7.4586e+00 1.6667e+00 -6.8892e-01 -2.8697e+00
3.8830 9 4.3152e+00 1.6458e-01 3.1754e+00 1.0296e+01
6.4022 14 5.6211e+00 1.0172e+00 4.1633e-01 1.3065e+00
1.1351 5 7.8376e-01 2.7154e+00 1.1746e+00 -2.2171e+01
3.3741 9 4.4165e+00 -1.1809e-01 -2.0644e+00 1.0296e+01
7.3259 15 6.8859e+00 1.7374e+00 2.6211e-01 -2.8697e+00
6.3377 14 5.5563e+00 9.9310e-01 3.3206e-01 1.3065e+00
7.6759 15 7.4895e+00 1.6534e+00 -7.4230e-01 -2.8697e+00
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