d02 — Ordinary Differential d02rac

NAG Library Function Document

nag_ode bvp fd nonlin_gen (d02rac)

1 Purpose

nag _ode bvp fd nonlin _gen (d02rac) solves a two-point boundary value problem with general
boundary conditions for a system of ordinary differential equations, using a deferred correction
technique and Newton iteration.

2 Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_bvp_fd nonlin_gen (Integer neq, double *deleps,

void (*fcn) (Integer neq, double x, double eps, const double yI[],
double f[], Nag_User *comm),

Integer numbeg, Integer nummix,

void (*g) (Integer neq, double eps, const double yal], const double yb[],
double bc[], Nag_User *comm),

Nag_MeshSet init, Integer mnp, Integer *np, double x[], double yI[],
double tol, double abtl[],

void (*jacobf) (Integer neq, double x, double eps, const double y[],
double f[], Nag_User *comm),

void (*jacobg) (Integer neq, double eps, const double vyall,
const double yb[], double aj[], double bj[], Nag_User *comm),

void (*jaceps) (Integer neq, double x, double eps, const double yI[],
double f[], Nag_User *comm),

void (*jacgep) (Integer neq, double eps, const double yall,
const double yb[], double bcep[], Nag_User *comm),

Nag_User *comm, NagError *fail)

3 Description

nag ode bvp fd nonlin gen (d02rac) solves a two-point boundary value problem for a system of n
ordinary differential equations in the interval [a,b] with b > a. The system is written in the form
y;:fi(xaylay27-'-ayn)7 izlazy"'an (1)

and the derivatives f; are evaluated by fen. With the differential equations (1) must be given a system
of n (nonlinear) boundary conditions

gl(y(a)vy(b)):07 P = 1727"'7n7

where

y(@) = [y (), (@), ... yala)]". (2)

The functions g; are evaluated by g. The solution is computed using a finite difference technique with
deferred correction allied to a Newton iteration to solve the finite difference equations. The technique
used is described fully in Pereyra (1979).

You must supply an absolute error tolerance and may also supply an initial mesh for the finite
difference equations and an initial approximate solution (alternatively a default mesh and approximation
are used). The approximate solution is corrected using Newton iteration and deferred correction. Then,
additional points are added to the mesh and the solution is recomputed with the aim of making the error

Mark 26 d02rac.1

d02rac NAG Library Manual

everywhere less than your tolerance and of approximately equidistributing the error on the final mesh.
The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh. If,
on the other hand, the solution is required at several specific points then you should use the
interpolation functions provided in Chapter e01 if these points do not themselves form a convenient
mesh.

The Newton iteration requires Jacobian matrices

@5) <ajg<>> and (ajiw)

OFf

These may be supplied through jacobf for (a—fl> and jacobg for the others. Alternatively the Jacobians
Yj

may be calculated by numerical differentiation using the algorithm described in Curtis et al. (1974).

For problems of the type (1) and (2) for which it is difficult to determine an initial approximation from
which the Newton iteration will converge, a continuation facility is provided. You must set up a family
of problems

y/ = f(xv Y, 6)7 g(y(a’)a y(b)> 6) =0, (3)

where f = [fi, f2,.- -, fn]T etc., and where € is a continuation parameter. The choice ¢ = 0 must give a
problem (3) which is easy to solve and € =1 must define the problem whose solution is actually
required. The function solves a sequence of problems with € values

0= <e<---<¢g=1 (4)

The number p and the values ¢; are chosen by the function so that each problem can be solved using the

. . . L .0 0 .
solution of its predecessor as a starting approximation. Jacobians (’)_f and a—g are required and they may
€ €

be supplied by you via jaceps and jacgep respectively or may be computed by numerical
differentiation.

4 References

Curtis A R, Powell M J D and Reid J K (1974) On the estimation of sparse Jacobian matrices J. Inst.
Maths. Applics. 13 117-119

Pereyra V (1979) PASVA3: An adaptive finite-difference Fortran program for first order nonlinear,
ordinary boundary problems Codes for Boundary Value Problems in Ordinary Differential Equations.
Lecture Notes in Computer Science (eds B Childs, M Scott,] W Daniel, E Denman and P Nelson) 76
Springer—Verlag

5 Arguments

1: neq — Integer Input
On entry: n, the number of differential equations.

Constraint: neq > 0.

2: deleps — double * Input/Output

On entry: must be given a value which specifies whether continuation is required. If deleps < 0.0
or deleps > 1.0 then it is assumed that continuation is not required. If 0.0 < deleps < 1.0 then it
is assumed that continuation is required unless deleps < \/machine precision when an error exit
is taken. deleps is used as the increment e¢; —¢; (see (4)) and the choice deleps = 0.1 is
recommended.

On exit: an overestimate of the increment €, — €,_; (in fact the value of the increment which
would have been tried if the restriction €, = 1 had not been imposed). If continuation was not
requested then deleps = 0.0.

d02rac.2 Mark 26

d02 — Ordinary Differential d02rac

If continuation is not requested then jaceps and jacgep may each be replaced by the NAG
defined null function pointer NULLFN.
3: fcn — function, supplied by the user External Function

fcn must evaluate the functions f; (i.e., the derivatives 1) at a general point x for a given value
of ¢, the continuation parameter (see Section 3).

The specification of fen is:

void fcn (Integer neq, double x, double eps, const double yI[],
double f[], Nag_User *comm)

1: neq — Integer Input

On entry: n, the number of equations.

2: x — double Input

On entry: x, the value of the independent variable.

3: eps — double Input
On entry: e, the value of the continuation parameter. This is 1 if continuation is not
being used.

4: y[neq] — const double Input
On entry: y;, for i =1,2,..., n, the values of the dependent variables at x.

5: f[neq] — double Output
On exit: the values of the derivatives f; evaluated at x given ¢, for i=1,2,...,n.

6: comm — Nag User *

Pointer to structure of type Nag User.

p — Pointer

The type Pointer will be void *. Before calling nag ode bvp fd nonlin gen
(d02rac) these pointers may be allocated memory and initialized with various
quantities for use by comm when called from nag ode bvp fd nonlin_gen
(d02rac).

4: numbeg — Integer Input
On entry: the number of left-hand boundary conditions (that is the number involving y(a) only).

Constraint: 0 < numbeg < neq.

5: nummix — Integer Input

On entry: the number of coupled boundary conditions (that is the number involving both y(a) and
y(b))-

Constraint: 0 < nummix < neq — numbeg.

6: g — function, supplied by the user External Function

g must evaluate the boundary conditions in equation (3) and place them in the array be.

Mark 26 d02rac.3

d02rac NAG Library Manual

The specification of g is:

void g (Integer neq, double eps, const double yal], const double ybl[],
double bc[], Nag_User *comm)

1: neq — Integer Input

On entry: n, the number of equations.

2: eps — double Input
On entry: e, the value of the continuation parameter. This is 1 if continuation is not
being used.

3: yalneq] — const double Input

On entry: the value y;(a), for i=1,2,... n.

4: yb[neq] — const double Input
On entry: the value y;(b), for i=1,2,...,n.

5: be[neq] — double Output

On exit: the values g;(y(a),y(b),¢), for i=1,2,...,n. These must be ordered as
follows:

(i) first, the conditions involving only y(a) (see numbeg);

(ii) next, the nummix coupled conditions involving both y(a) and y(b) (see nummix);
and,

(iii) finally, the conditions involving only y(b) (neq — numbeg — nummix).

6: comm — Nag User *

Pointer to structure of type Nag User.

p — Pointer

The type Pointer will be void *. Before calling nag ode bvp fd nonlin_gen
(d02rac) these pointers may be allocated memory and initialized with various
quantities for use by comm when called from nag ode bvp fd nonlin gen
(d02rac).

7: init — Nag MeshSet Input

On entry: indicates whether you wish to supply an initial mesh and approximate solution
(init = Nag_UserInitMesh) or whether default values are to be used, (init = Nag_DeflnitMesh).

Constraint: init = Nag_DefInitMesh or Nag_UserInitMesh.

8: mnp — Integer Input

On entry: mnp must be set to the maximum permitted number of points in the finite difference
mesh.

Constraint: mnp > 32.

9: np — Integer * Input/Output
On entry: must be set to the number of points to be used in the initial mesh.
Constraint: 4 < np < mnp.

On exit: the number of points in the final mesh.

d02rac.4 Mark 26

d02 — Ordinary Differential d02rac

10:

11:

12:

13:

14:

x[mnp| — double Input/Output

On entry: you must set X[0] = a and x[np — 1] = b. If init = Nag_DefInitMesh on entry a default
equispaced mesh will be used, otherwise you must specify a mesh by setting x[i — 1] = z;, for
1=2,3,...,np— 1.

Constraints:

if init = Nag_DefInitMesh, x[0] < x[np — 1];
if init = Nag_UserInitMesh, x[0] < x[1] < --- < x[np — 1].

On exit: x[0],x[1],...,x[np — 1] define the final mesh (with the returned value of np) and
x[0] = @ and x[np — 1] = b.

y[neq x mnp] — double Input/Output
On entry: if init = Nag_DefInitMesh, then y need not be set.

If init = Nag_UserInitMesh, then the array y must contain an initial approximation to the solution
such that y[(j — 1) x mnp + ¢ — 1] contains an approximation to

yj(z;), i=1,2,...,npand j=1,2,...,n.
On exit: the approximate solution z;(x;) satisfying (5) on the final mesh, that is
y(j—1) xmnp+i—1]=z;(x;), i=1,2,...,npand j=1,2,...,n,

where np is the number of points in the final mesh. If an error has occurred then y contains the
latest approximation to the solution. The remaining columns of y are not used.

tol — double Input
On entry: a positive absolute error tolerance. If

a=x <Tp < < Tpp=>b

is the final mesh, z;(z;) is the jth component of the approximate solution at x;, and y;(z) is the
jth component of the true solution of (1) and (2), then, except in extreme circumstances, it is
expected that

|zj(2i) —yj(z;)| <tol, i=1,2,...,npandj=1,2,....,n (5)

Constraint: tol > 0.0.

abt[neq] — double Output

On exit: abt[i — 1], for i =1,2,...,n, holds the largest estimated error (in magnitude) of the ith
component of the solution over all mesh points.

jacobf — function, supplied by the user External Function

. ofi .

jacobf evaluates the Jacobian (a—ﬁ> ,fori=1,2,...,nand j=1,2,...,n, given z and y;, for
Y '

j=12,...,n.

If all Jacobians are to be approximated internally by numerical differentiation then it must be

replaced by the NAG defined null function pointer NULLFN.

The specification of jacobf is:

void jacobf (Integer neq, double x, double eps, const double yI[],
double f[], Nag_User *comm)

1: neq — Integer Input

On entry: n, the number of equations.

Mark 26 d02rac.5

d02rac NAG Library Manual

2: x — double Input

On entry: z, the value of the independent variable.

3: eps — double Input
On entry: €, the value of the continuation parameter. This is 1 if continuation is not
being used.

4: y[neq] — const double Input
On entry: y,, for i=1,2,... n, the values of the dependent variables at .

5: f[neq x neq] — double Output

of
On exit: f[(j — 1) x neq + ¢ — 1] must be set to the value ofa—fZ, evaluated at the point
Y
(z,y), for i=1,2,...,nand j=1,2,...,n.

6: comm — Nag User *

Pointer to structure of type Nag User.

p — Pointer

The type Pointer will be void *. Before calling nag ode bvp fd nonlin_gen
(d02rac) these pointers may be allocated memory and initialized with various
quantities for use by comm when called from nag ode bvp fd nonlin gen
(d02rac).

Note that if jacobf is supplied then jacobg must also be supplied. Note that if jacobf is supplied
and continuation is requested then jaceps and jacgep must also be supplied.

jacobg — function, supplied by the user External Function

. Jgi Jgi . . .
jacobg evaluates the Jacobians (Ji) and (I) . The ordering of the rows of aj and bj
dy;(a) Ay;(b)

must correspond to the ordering of the boundary conditions described in the specification of g.

If all Jacobians are to be approximated internally by numerical differentiation then it must be
replaced by the NAG defined null function pointer NULLFN.

The specification of jacobg is:

void jacobg (Integer neq, double eps, const double yall,
const double yb[], double ajl[], double bj[], Nag_User *comm)

1: neq — Integer Input

On entry: n, the number of equations.

2: eps — double Input
On entry: e, the value of the continuation parameter. This is 1 if continuation is not
being used.

3: yaneq] — const double Input

On entry: the value y;(a), for i=1,2,...,n.

4: yb[neq] — const double Input

On entry: the value y;(b), for i=1,2,...,n.

d02rac.6 Mark 26

d02 — Ordinary Differential d02rac

16:

5: aj[neq x neq] — double Output
Jg; ‘
On exit: aj[(i — 1) x neq + j — 1] must be set to the value J ,fori=1,2,....,n
dy;(a)
and j=1,2,...,n.
6: bj[neq x neq] — double Output
Jgi

On exit: bj[(i— 1) x neq + j — 1] must be set to the value ,for i=1,2,...,n

dy;(b)
and j=1,2,...,n.

7: comm — Nag User *

Pointer to structure of type Nag User.

p — Pointer

The type Pointer will be void *. Before calling nag ode bvp fd nonlin gen
(d02rac) these pointers may be allocated memory and initialized with various
quantities for use by comm when called from nag ode bvp fd nonlin_gen
(d02rac).

Note that if jacobg is supplied then jacobf must also be supplied.

jaceps — function, supplied by the user External Function
ZJi
Oe
If all Jacobians (derivatives) are to be approximated internally by numerical differentiation, or

continuation is not being used, then it must be replaced by the NAG defined null function pointer
NULLFN.

jaceps evaluates the derivative given z and y if continuation is being used.

The specification of jaceps is:

void jaceps (Integer neq, double x, double eps, const double yI[],
double f[], Nag_User *comm)

l: neq — Integer Input

On entry: n, the number of equations.

2: x — double Input

On entry: x, the value of the independent variable.

3: eps — double Input

On entry: e, the value of the continuation parameter.

4: y[neq] — const double Input
On entry: the solution values y;, for 1 =1,2,...,n, at the point z.
5: f[neq] — double Output

of:
On exit: f[i — 1] must contain the value 8—fl at the point (x,y), for i =1,2,...,n.
3

6: comm — Nag User *

Pointer to structure of type Nag User.

Mark 26 d02rac.7

d02rac NAG Library Manual

17:

18:

p — Pointer

The type Pointer will be void *. Before calling nag ode bvp fd nonlin gen
(d02rac) these pointers may be allocated memory and initialized with various
quantities for use by comm when called from nag ode bvp fd nonlin gen
(d02rac).

Note that if jaceps is defined then jacgep must also be defined.

jacgep — function, supplied by the user External Function

jacgep evaluates the derivatives % if continuation is being used.
€

If all Jacobians (derivatives) are to be approximated internally by numerical differentiation, or
continuation is not being used, then it must be replaced by the NAG defined null function pointer
NULLFN.

The specification of jacgep is:

void jacgep (Integer neq, double eps, const double vyall,
const double yb[], double bcep[], Nag_User *comm)

1: neq — Integer Input

On entry: n, the number of equations.

2: eps — double Input

On entry: e, the value of the continuation parameter.

3: yalneq] — const double Input

On entry: the value of y;(a), for i=1,2,... n.

4: yb[neq] — const double Input
On entry: the value of y;(b), for i=1,2,..., n.

5: bcep[neq] — double Output
. Jgi .
On exit: beepli — 1] must contain the value of %, for i=1,2,...,n.
€
6: comm — Nag User *

Pointer to structure of type Nag User.

p — Pointer

The type Pointer will be void *. Before calling nag ode bvp fd nonlin gen
(d02rac) these pointers may be allocated memory and initialized with various
quantities for use by comm when called from nag ode bvp fd nonlin gen
(d02rac).

Note that if jacgep is defined then jaceps must also be defined.

comm — Nag User *

Pointer to structure of type Nag User.

d02rac.8 Mark 26

d02 — Ordinary Differential d02rac

p — Pointer

The type Pointer will be void *. Before calling nag ode bvp fd nonlin gen (d02rac)
these pointers may be allocated memory and initialized with various quantities for use by
comm when called from nag_ode bvp fd nonlin_gen (d02rac).

19: fail — NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_2 INT_ARG_ZERO

On entry, numbeg = 0 and nummix = 0. These arguments must not both be zero.

NE_2_REAL_ARG_LE
On entry, x[0] = (value) and x[np — 1] = (value).
Constraint: x[0] < x[np — 1].

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument init had an illegal value.

NE_CONV_CONT
Convergence failure. There are a number of possible causes.
(a) Faulty coding of the Jacobian calculation functions.

(b) If Jacobians have not been supplied then inaccurate Jacobians have been calculated
internally (not very likely).

(c) A poor choice of initial mesh or initial starting conditions either by the user or by default.
Try using the continuation facility.

The Newton iteration has failed to converge.

This could be due to there being too few points in the initial mesh or to the initial approximate
solution being too inaccurate.

If this latter reason is suspected or you cannot make changes to prevent this error, you should use
the function with a continuation facility instead.

NE_CONV_CONT_DELEPS

deleps is required to be less than machine precision for continuation to proceed. It is likely that
either the problem has no solution for some value near the current value of € or that the problem
is so difficult that even with continuation it is unlikely to be solved using this function. Using
more mesh points may help.

The continuation step is required to be less than machine precision for continuation to proceed.
It is likely that either the problem has no solution for some value of the continuation parameter
near the current value or that the problem is so difficult that even with continuation it is unlikely
to be solved using this function. In the latter case using more mesh points initially may help.

NE_CONV_CONT_DEP

There is no dependence on the continuation parameter when continuation is being used. This can
be due to faulty coding of derivatives with respect to the continuation parameter or to a zero
initial choice of approximate solution.

Mark 26 d02rac.9

d02rac NAG Library Manual

There is no dependence on € when continuation is being used. This may be due to faulty coding
of jaceps or jacgep, or in some circumstances, to a zero initial choice of approximate solution
(such as is chosen when init = Nag_DefInitMesh).

NE_CONV_JACOBG

The Jacobian calculated by jacobg (or the equivalent matrix calculated by numerical
differentiation) is singular. This may be due to faulty coding of jacobg or in some circumstances,
to a zero initial choice of approximate solution (such as is chosen when
init = Nag_DeflInitMesh).

The Jacobian for the boundary conditions is singular.
This may occur due to faulty coding of the Jacobian or, in some circumstances, to a zero initial
choice of approximate solution.

NE_CONV_MESH

A finer mesh is required for the accuracy requested; that is, mnp = (value) is not large enough.

NE_CONV_ROUNDOFF

Newton iteration has reached round-off level.
If desired accuracy has not been reached, then tol is too small for this problem and this machine
precision.

Solution cannot be improved due to roundoff error. Too much accuracy might have been
requested.
NE_INT_ARG_LT

On entry, mnp = (value).
Constraint: mnp > 32.

On entry, neq = (value).
Constraint: neq > 1.

On entry, np = (value).
Constraint: np > 4.

On entry, numbeg = (value).
Constraint: numbeg > 0.

On entry, nummix = (value).
Constraint: nummix > 0.
NE_INT _RANGE_CONS

On entry, np = (value) and mnp = (value).
Constraint: np < mnp.

On entry, numbeg = (value) and neq = (value).
Constraint: numbeg < neq.

On entry, numbeg = (value), nummix = (value)
and neq = (value).
Constraint: numbeg + nummix < neq.

NE_INTERNAL_ERROR

A continuation error occurred, but continuation is not being used.
Please contact NAG.

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

d02rac.10 Mark 26

d02 — Ordinary Differential d02rac

A serious error occurred in a call to the internal integrator.
The error code internally was (value).
Please contact NAG.
NE_INVALID FUN _JAC
Only one of jacobf or jacobg has been set to non-null possibly implying user-defined Jacobians.
Both must be non-null.
NE_INVALID FUN _JAC CONT

deleps has been set to (value) implying continuation and both jacobf and jacobg have been set
to non-null implying user-defined Jacobians. Hence the functions jaceps and jacgep must also be
non-null.

NE_INVALID_FUN_JAC_NO_CONT

deleps has been set to (value) implying no continuation and both jacobf and jacobg have been
set to non-null implying user-defined Jacobians. Hence the functions jaceps and jacgep must be
NULL.

NE_INVALID_FUN_NO_JAC_CONT

deleps has been set to (value) implying continuation and both jacobf and jacobg have been set
to NULL implying no user-defined Jacobians. Hence the functions jaceps and jacgep must also
be NULL.

NE_NOT_STRICTLY_INCREASING

On entry the mesh points are not in strictly ascending order.
For i = (value), mesh point ¢ = (value), but mesh point ¢ + 1 = (value).

NE_REAL_ARG_LE

On entry, tol = (value).
Constraint: tol > 0.0.

7 Accuracy

The solution returned by the function will be accurate to your tolerance as defined by the relation (5)
except in extreme circumstances. The final error estimate over the whole mesh for each component is
given in the array abt. If too many points are specified in the initial mesh, the solution may be more
accurate than requested and the error may not be approximately equidistributed.

8 Parallelism and Performance

nag_ode bvp fd nonlin_gen (d02rac) is not threaded in any implementation.

9 Further Comments

There are too many factors present to quantify the timing. The time taken by nag ode bvp fd nonlin
gen (dO2rac) is negligible only on very simple problems.

In the case where you wish to solve a sequence of similar problems, the use of the final mesh and
solution from one case as the initial mesh is strongly recommended for the next.

Mark 26 d02rac.11

d02rac NAG Library Manual

10 Example

This example solves the differential equation

y/// _ _yy// . 26(1 _ y/2)
with e = 1 and boundary conditions

y(0)=y(0)=0, y(10)=1

to an accuracy specified by tol = 1.0e—4. The continuation facility is used with the continuation
parameter € introduced as in the differential equation above and with deleps = 0.1 initially. (The
continuation facility is not needed for this problem and is used here for illustration.)

10.1 Program Text

/* nag_ode_bvp_fd_nonlin_gen (dO2rac) Example Program.
NAGPRODCODE Version.
Copyright 2016 Numerical Algorithms Group.

Mark 26, 2016.

* X X % Ok F F

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>

#ifdef _ cplusplus
extern "C"
{
#endif
static void NAG_CALL fcn(Integer neq, double x, double eps,
const double y[], double f[], Nag User *comm);
static void NAG_CALL g(Integer neq, double eps, const double vyall,
const double yb[], double bc[], Nag_User *comm) ;
static void NAG_CALL jaceps(Integer neq, double x, double eps,
const double y[], double f[], Nag _User *comm);
static void NAG_CALL jacgep(Integer neq, double eps, const double vyall,
const double yb[], double bcepl],
Nag_User *comm) ;
static void NAG_CALL jacobf(Integer neq, double x, double eps,
const double y[], double f[], Nag_User *comm);
static void NAG_CALL jacobg(Integer neq, double eps, const double vyall,
const double yb[], double aj[], double bjl[l],
Nag_User *comm) ;
#ifdef _ cplusplus
}
#endif

#define NEQ 3
#define MNP 40

#define Y(I, J) y[(I) *tdy + J]
int main(void)

{

static Integer use_comm[6] = { 1, 1, 1, 1, 1, 1 };
double *abt = 0;
double deleps;

double tol;

double *x = 0, *y = 0;
Integer exit_status =
Integer i, J;

Integer np;

Integer numbeg, nummix;

0;

d02rac.12 Mark 26

d02 — Ordinary Differential

Integer neq, mnp, tdy;
Nag_User comm;
NagError fail;

INIT FAIL(fail);

d02rac

printf("nag_ode_bvp_fd _nonlin gen (dO2rac) Example Program Results\n");

/* For communication with user-supplied functions: */
comm.p = (Pointer) &use_comm;

printf("\nCalculation using analytic Jacobians\n\n");
neq = NEQ;
mnp = MNP;
if (neqg >= 1) {
if (!(abt = NAG_ALLOC(neq, double)) ||

1 (x = NAG_ALLOC(mnp, double)) || !(y = NAG_ALLOC(neq * mnp, double)))

{
printf("Allocation failure\n");

exit_status = -1;
goto END;
}
tdy = mnp;
}
else {
exit_status = 1;
return exit_status;

}
tol = 1.0e-4;

np = 17;

numbeg = 2;
nummix = O;

x[0] = 0.0;

x[np - 1] = 10.0;
deleps = 0.1;

/* nag_ode_bvp_fd_nonlin_gen (dO2rac).
* Ordinary differential equations solver, for general
* nonlinear two-point boundary value problems, using a
* finite difference technique with deferred correction
*
/
nag_ode_bvp_fd_nonlin_gen(neq, &deleps, fcn, numbeg, nummix, g,
Nag_DefInitMesh, mnp, &np, x, y, tol, abt,
jacobg, jaceps, jacgep, &comm, &fail);
if (fail.code != NE_NOERROR) {
printf ("Error from nag_ode_bvp_fd_nonlin_gen (dO2rac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}

printf("Solution on final mesh of %" NAG_IFMT " points \n", np);
printf("%$7s%15s%13s%13s\n","x","y_1","y_2","y_3");

for (§J = 0; j < np; ++3) {
printf("%10.6£f", x[j1);
for (i = 0; i < neq; ++1i)
printf ("$13.4f", Y(i, 3J));
printf ("\n");
b

printf ("\n\nMaximum estimated error by components \n");

for (i = 0; 1 < 2; ++1)
printf (" %11.2e", abt[i]);
printf (" \n");

END:
NAG_FREE (abt) ;
NAG_FREE (x) ;
NAG_FREE (y) ;

Mark 26

jacobf,

d02rac.13

d02rac NAG Library Manual

return exit_status;

}

#undef Y

static void NAG_CALL fcn(Integer neq, double x, double eps, const double yI[],

double f[], Nag_User *comm)

{
Integer *use_comm = (Integer *) comm->p;
if (use_comm[0]) ¢
printf (" (User-supplied callback fcn, first invocation.)\n");
use_comm[0] = 0;
¥
£10] yl1];
£l1] = yl[2];
fl2] -y[0] * y[2] - (1.0 - y[1] * y[1]) * 2.0 * eps;
}
static void NAG_CALL g(Integer neq, double eps, const double vyall,
const double yb[], double bc[], Nag_User *comm)
{
Integer *use_comm = (Integer *) comm->p;
if (use_comm[1]) {
printf (" (User-supplied callback g, first invocation.)\n");
use_comm[1l] = 0;
}
bc[0] = yalO];
bcll] = yalll;
bc[2] = yb[1] - 1.0;
Y/ g/

static void NAG_CALL jaceps(Integer neq, double x, double eps,
const double y[], double f[], Nag_User *comm)
{

Integer *use_comm = (Integer *) comm->p;

if (use_comm[2]) {
printf (" (User-supplied callback jaceps, first invocation.)\n");

use_comm[2] = 0;
}
f[0] 0.0;
f[1] = 0.0;
fl2] (1.0 - y[1] * y[1]) * -2.0;

}

static void NAG_CALL jacgep(Integer neq, double eps, const double yall],

const double yb[], double bcep[], Nag_User *comm)

{
Integer 1i;
Integer *use_comm = (Integer *) comm->p;

if (use_comm([3]) {
printf (" (User-supplied callback jacgep, first invocation.)\n");

use_comm([3] = O;

b

for (i = 0; i < neq; ++1i)
bcep[i]l = 0.0;

}

static void NAG_CALL jacobf (Integer neq, double x, double eps,
const double y[], double f[], Nag_User *comm)

{
Integer i, Jj;
Integer *use_comm = (Integer *) comm->p;

d02rac.14

Mark 26

d02 — Ordinary Differential

#define Y(I)
#define F (I,

[(I)
[((I)

y -11]
J) £ -1)*neqg+(J) -1]
if (use_comm[4]) {

printf (" (User-supplied callback jacobf,

use_comm[4] = 0;
}
for (i = 1; i <= neq; ++i) {
for (j = 1; j <= neq; ++3j)
F(i, j) = 0.0;

b

F(1, 2) = 1.0;

F(2, 3) = 1.0;

F(3, 1) = -Y(3);

F(3, 2) = Y(2) * 4.0 * eps;

F(3, 3) = -Y(1);
¥
static void NAG_CALL jacobg(Integer neq,

const double ybl[],
Nag_User *comm)

{

Integer i, J;

Integer *use_comm = (Integer *) comm->p;
#define AJ(I, J) aj[((I) -1)*neg+(J) -1]
#define BJ(I, J) bj[((I) -1)*neqg+(J) -11

if (use_comm[5]) {

printf (" (User-supplied callback jacobg,
use_comm[5] 0;

10.2 Program Data

None.

10.3 Program Results

nag_ode_bvp_fd_nonlin_gen (d0O2rac)

Calculation using analytic Jacobians

callback
callback
callback
callback

User-supplied
User-supplied
User-supplied
User-supplied
User-supplied callback jaceps, first
User-supplied callback jacgep, first
Solution on final mesh of 33 points

fcn,
g,
jacobf,
jacobg,

first
first

(
(
(
(
(
(

X v_1 y_2
0.000000 0.0000 0.0000
0.062500 0.0032 0.1016
0.125000 0.0125 0.1954
0.187500 0.0275 0.2816
0.250000 0.0476 0.3605
0.375000 0.1015 0.4976
0.500000 0.1709 0.6097
0.625000 0.2530 0.6999

Mark 26

double eps,

COORRRER

first invocation.)\n");

const double yall
double ajl[], double bj[

first invocation.)\n");

Example Program Results

first invocation.)
first invocation.)
invocation.
invocation.
invocation.
invocation.

v_3
.6872
.5626
.4398
.3203
.2054
.9924
.8048
.6438

i

d02rac

d02rac.15

d02rac NAG Library Manual
0.703125 0.3095 0.7467 0.5563
0.781250 0.3695 0.7871 0.4784
0.937500 0.4978 0.8513 0.3490
1.093750 0.6346 0.8977 0.2502
1.250000 0.7776 0.9308 0.1763
1.458333 0.9748 0.9598 0.1077
1.666667 1.1768 0.9773 0.0639
1.875000 1.3815 0.9876 0.0367
2.031250 1.5362 0.9922 0.0238
2.187500 1.6915 0.9952 0.0151
2.500000 2.0031 0.9983 0.0058
2.656250 2.1591 0.9990 0.0035
2.812500 2.3153 0.9994 0.0021
3.125000 2.6277 0.9998 0.0007
3.750000 3.2526 1.0000 0.0001
4.375000 3.8776 1.0000 0.0000
5.000000 4.5026 1.0000 0.0000
5.625000 5.1276 1.0000 -0.0000
6.250000 5.7526 1.0000 0.0000
6.875000 6.3776 1.0000 -0.0000
7.500000 7.0026 1.0000 0.0000
8.125000 7.6276 1.0000 -0.0000
8.750000 8.2526 1.0000 0.0000
9.375000 8.8776 1.0000 -0.0000
10.000000 9.5026 1.0000 0.0000
Maximum estimated error by components
6.92e-05 1.81e-05
Example Program
Solution of Third-order BVP
10 T T T T 18
ES
* 16
8 * 14
X
* 1.2
6
* S AHFRT IR H oK K s 1]
\ >
> e]
o8 ®
4 >
-4 0.6
+4 04
2
4 02
Y’
O X TR R KK KKK Koo KKK Koo Koo % 0
1 1 1 1
0 2 4 6 8 10
d02rac.16 (last) Mark 26

	d02rac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Curtis et al. (1974)
	Pereyra (1979)

	5 Arguments
	neq
	deleps
	fcn
	neq
	x
	eps
	y
	f
	comm
	p

	numbeg
	nummix
	g
	neq
	eps
	ya
	yb
	bc
	comm
	p

	init
	mnp
	np
	x
	y
	tol
	abt
	jacobf
	neq
	x
	eps
	y
	f
	comm
	p

	jacobg
	neq
	eps
	ya
	yb
	aj
	bj
	comm
	p

	jaceps
	neq
	x
	eps
	y
	f
	comm
	p

	jacgep
	neq
	eps
	ya
	yb
	bcep
	comm
	p

	comm
	p

	fail

	6 Error Indicators and Warnings
	NE_2_INT_ARG_ZERO
	NE_2_REAL_ARG_LE
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CONV_CONT
	NE_CONV_CONT_DELEPS
	NE_CONV_CONT_DEP
	NE_CONV_JACOBG
	NE_CONV_MESH
	NE_CONV_ROUNDOFF
	NE_INT_ARG_LT
	NE_INT_RANGE_CONS
	NE_INTERNAL_ERROR
	NE_INVALID_FUN_JAC
	NE_INVALID_FUN_JAC_CONT
	NE_INVALID_FUN_JAC_NO_CONT
	NE_INVALID_FUN_NO_JAC_CONT
	NE_NOT_STRICTLY_INCREASING
	NE_REAL_ARG_LE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

